
NASA
Reference
Publication
1327

Lawrence
Livermore Nationai
Laboratory Report
UCRL-ID-113855

1993

National Aermauhcs and
Space Administration
Oftice of Management
Scienwic and Technical
Infmatim Rogram
1993

Description and Use of LSODE,
the Livermore Solver for
Ordinary Differential
Equations

,
Krishnan Radhakrishnan
Sverdrup Technology, Inc.
Uwis Research Center Group

Alan C. Hindmarsh
Lawrence Livermore National Laboratory
Livermore, CA

Preface
This document provides a comprehensive description of LSODE, a solver for

initial value problems in ordinary differential equation systems. It is intended to
bring together numerous materials documenting various aspects of LSODE,
including technical reports on the methods used, published papers on LSODE,
usage documentation contained within the LSODE source, and unpublished notes
on algorithmic details.

The three central chapters-n methods, code description, and code usage-are
largely independent. Thus, for example, we intend that readers who are familiar
with the solution methods and interested in how they are implemented in LSODE
can read the Introduction and then chapter 3, Description of Code, without
reading chapter 2, Description and Implementation of Methods. Similarly, those
interested solely in how to use the code need read only the Introduction and then
chapter 4, Description of Code Usage. In this case chapter 5, Example Problem,
which illustrates code usage by means of a simple, stiff chemical kinetics problem,
supplements chapter 4 and may be of further assistance.

Although this document is intended mainly for users of LSODE, it can be used
as supplementary reading material for graduate and advanced undergraduate
courses on numerical methods. Engineers and scientists who use numerical
solution methods for ordinary differential equations may also benefit from this
document.

...
Ill

Contents
ListofFigures ... ix

ListofTables ...
,

Chapter1 Introduction .. 1

Chapter 2 Description and Implementation of Methods 7
2.1 Linear Multistep Methods 7
2.2 Corrector Iteration Methods 9

2.2.2 Newton-Raphson Iteration 13
2.2.3 Jacobi-Newton Iteration 15
2.2.4 Unified Formulation 15

2.3 MatrixFormulation .. 17
2.4 Nordsieck's History Matrix -20
2.5 Local Truncation Error Estimate and Control 28
2.6 Corrector Convergence Test and Control 32
2.7 Step Size and Method Order Selection and Change 33
2.8 Interpolation at Output Stations 36
2.9 Starting Procedure ... 39

2.2.1 Functional Iteration 11

Chapter 3 Description of Code 41
3.1 Integration and Corrector Iteration Methods 41

3.3 Internal Communication 46
3.4 Special Features ... 46

3.4.1 -Initial Step Size Calculation 57
3.4.2 Switching Methods 64

Excessive Accuracy Specification Test 64
3.4.4 Calculation of Method Coefficients -65
3.4.5 Numerical Jacobians 66
3.4.6 Solution of Linear System of Equations 69
3.4.7 Jacobian Matrix Update 70

3.2 Codestructure .. 42

3.4.3

V


~~~ 

Contents 

3.4.8 Corrector Iteration Convergence and Corrective Actions ..... 70 
3.4.9 Local Truncation Error Test and Corrective Actions . . . . . . . .  71 
3.4.10 Step Size and Method Order Selection . . . . . . . . . . . . . . . . . . .  72 

3.5 Error Messages ............................................ 74 

Chapter 4 Description of Code Usage ............................. 75 
4.1 Code Installation .......................................... 75 

4.1.1 BLOCK DATA Variables ............................. 75 
4.1.2 Modifying Subroutine XERRWV ....................... 76 

4.3 User-Supplied Subroutine for Derivatives (F) .................... 83 
4.4 User-Supplied Subroutine for Analytical Jacobian (JAC) ........... 84 
4.5 Detailed Usage Notes ...................................... -85 

4.5.1 Normal Usage Mode ................................. 86 
4.5.2 Use of Other Options ................................ 86 
4.5.3 Dimensioning Variables .............................. 86 
4.5.4 Decreasing the Number of Differential Equations (NEQ) .... 87 
4.5.5 Specification of Output Station (TOUT) . . . . . . . . . . . . . . . . .  87 
4.5.6 Specification of Critical Stopping Point (TCRTT) . . . . . . . . . .  88 
4.5.7 Selection of Local Error Control Parameters 

(ITOL, RTOL, and ATOL) ............................ 88 
4.5.8 Selection of Integration and Corrector Iteration 

Methods(MF) ...................................... 89 
4.5.9 Switching Integration and Corrector Iteration Methods . . . . . .  91 

4.6 Optional Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 
4.6.1 Initial Step Size (HO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 
4.6.2 Maximum Step Size (HMAX) ......................... 92 
4.6.3 Maximum Method Order (MAXORD) . . . . . . . . . . . . . . . . . . .  92 

4.7 Optional Output ........................................... 92 
4.8 Other Routines ............................................ 93 

4.8.1 Interpolation Routine (Subroutine INTDY) . . . . . . . . . . . . . . .  93 
4.8.2 Using Restart Capability (Subroutine SRCOM) ............ 94 
4.8.3 Error Message Control (Subroutines XSETF and 

XSETUN) ......................................... 95 
4.9 Optionally Replaceable Routines .............................. 95 

4.9.2 Vector-Norm Computation (Function VNORM) ........... 97 
4.10 Overlay Situation ......................................... 98 
4.11 Troubleshooting .......................................... 98 

Chapter 5 Example Problem .................................... 101 
5.1 Description of Problem .................................... 101 
5.2 Coding Required To Use LSODE ............................ 102 

5.2.1 General ........................................... 102 

4.2 Callsequence ............................................ 76 

4.9.1 Setting Error Weights (Subroutine EWSET) .............. 95 

vi 



5.2.2 Selection of Parameters . 
5.3 Computed Results .......... 

Chapter 6 Code Availability ...... 

References .................... 

............. 

............. 

............. 

............. 

...... 

...... 

...... 

...... 

... 

... 

... 

... 

Contents 

........ 102 

........ 104 

........ 105 

........ 107 

vii 





. 

List of Figures 
Figu.re 3.1.-Structure of MODE package ......................... 

Figure 3.2.-Howchart of subroutine LSODE ....................... 

Figure 33.-Nowchart of subroutine STODE ....................... 

Figure 5.L-Listing of hUIN program for example problem ........... 

Figure 5.2.-Listing of subroutine (FEX) that computes derivatives for 
example problem ............................................ 

Figure 53.-Listing of subroutine (JEX) that computes analytical Jacobian 
matrix for example problem ................................... 

Figure 5.4.4utput from program for example problem ............... 

.45 

.59 

.61 

103 

103 

104 

104 

ix 





List of Tables 
Table 2.1,Method coefficients for Adams-Moulton method in normal 

form of orders 1 to 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . -25 

Table 23.-Method coefficients for backward differentiation formula 
method in normal form of orders 1 to 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 

Table 3.1.4ummary of integration methods included in LSODE 
and corresponding values of METH, the first decimal digit of MF . . . . . . .42 

Table 3.2.--Corrector iteration techniques available in LSODE and 
corresponding values of MITER, the second decimal digit of MF . . . . . . .32 

Table 3.3.-Description of subprograms used in LSODE . . . . . . . . . . . . . . . .44 

Table 3A.-Routines with common blocks, subprograms, and calling 
subprograms in double-precision version of LSODE . . . . . . . . . . . . . . . . . .47 

Table 3.5-Routines with common blocks, subprograms, and calling 
subprograms in single-precision version of LSODE . . . . . . . . . . . . . . . . . .48 

Table 3.6.-Common blocks with variables and subprograms where used . . .49 

Table 3.7.-Description of variables in common block EHOOO1, their 
current values, and subprograms where they are set . . . . . . . . . . . . . . . . . . .49 

Table 3.8.-Description of variables in common block LSOOO1, their 
current values, if any, and subprograms where they are set 
orcomputed ................................................. 50 

Table 39.-Length LENWM of array WM in table 3.8 for iteration 
techniques included in code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 

Table 4.1.-Values of ITASK used in LSODE and their meanings . . . . . . . . .77 

Table 4.2.-Values of ITOL used in LSODE and their meanings . . . . . . . . . .78 

Table 4.3.-Values of ISTATE that can be used on input to LSODE 
and their meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 

Table 4.4.-Values of ISTATE returned by LSODE and their meanings . . . .79 

xi 



List of Tables 

Table 4.5.-Values of IOPT that can be used on input to LSODE 
andtheirmeanings ............................................ 80 

Table 4.6.-Optional input parameters that can be set by user and their 
locations, meanings, and default values ........................... .80 

Table 4.7.-Optional output parameters returned by LSODE and their 
locationsandmeanings ......................................... 82 

Table 4.8.-Useful informational quantities regarding integration that 
can be obtained from array RWORK and their names and locations . . . . .  .82 

Table 4.9.-Minimum length required by real work array RWORK (Le., 
minimum LRW) for each MF ................................... .83 

Table 4.10.-Minimum length required by integer work array WORK 
I (Le., minimum LIW) for each MITER ............................ .83 

xii 



Chapter 1 
Introduction 

This report describes a FORTRAN subroutine package, LSODE, the Livermore 
Solver for Ordinary Differential Equations, written by Hindmarsh (refs. 1 and 2), 
and the methods included therein for the numerical solution of the initial value 
problem for a system of first-order ordinary differential equations (ODE'S). Such 
a problem can be written as 

1 ~$5,~) = yo = Given, 

where - y, -0 Y , - 9, and f are column vectors with N (2 1) components and 5 is the 
independent variable, for example, time or distance. In component form equa- 
tion (1. l) may be written as 

i = 1, ..., N. (12) 

I y j ( e 0 )  = yj,o = Given 

The initial value problem is to find the solution function y at one or more values 
of 5 in a prescribed integration interval [ h b n d ] ,  where thi  initial value of 1, yo, 
at 6 = is given. The endpoint, Lnd,  may not be known in advance as, for 
example, when asymptotic values of y as 5 + 00 are required. 

Initial value, first-order ODE'S arise in many fields, such as chemical kinetics, 
biology, electric network analysis, and control theory. It is assumed that the 

1 



1. Introduction 

problem is well posed and possesses a solution that is unique in the interval of 
interest. Solution existence and uniqueness are guaranteed if, in the region of 
interest, f is defined and continuous and for any two vectors y and y* in that 
region there exists a positive constant 9 such that (refs. 3 and 4)- 

- 

which is known as a Lipschitz condition. Here 11-11 denotes a vector norm (e.g., 
ref. 5),  and the constant 9 is known as a Lipschitz constant off with respect to y . 

The right-hand side f of the ODE system must be a function of y and 5 only. Tt 
cannot therefore involve y at previous 5 values, as in delay or retGded ODE’s or 
integrodifferential equations. It cannot also involve random variables, as in 
stochastic differential equations. A second- or higher-order ODE system must be 
reduced to a first-order ODE system. 

The solution methods included in LSODE replace the ODE’s with difference 
equations and then solve them step by step. Starting with the initial conditions at 
50, approximations L(= YiPm i = 1, ...,N) to the exact solution y(Cn) [= y,(cn), 
i = 1, ...,Nl of the ODE’s are generated at the discrete mesh points& (n = 1,2, ...), 
which are themselves determined by the package. The spacing between any two 
mesh points is called the step size or step length and is denoted by h,, where 

An important feature of LSODE is its capability of solving ‘‘stiff’ ODE problems. 
For reasons discussed by Shampine (ref. 6 )  stiffness does not have a simple 
definition involving only the mathematical problem, equation (1.1). However, 
Shampine and Gear (ref. 7) discuss some fundamental issues related to stiffness 
and how it arises. An approximate description of a stiff ODE system is that it 
contains both very rapidly and very slowly decaying terms. Also, a characteristic 
of such a system is that the NxN Jacobian matrix J (= af/dy), with element .Il, 
defined as 

- 

J-. = ah/ayj. i , j  = 1 ,..., N ,  
I/ 

has eigenvalues {hi} with real parts that are predominantly negative and also vary 
widely in magnitude. Now the solution varies locally as a linear combination of 
the exponentials { ecRe(’,)}, which all decay if all Re& ) < 0, where Re&) is the 
real part of h,. Hence for sufficiently large 5 (> l/maxlRe(hi)l, where the bars 1.1 
denote absolute value), the terms with the largest Re&) will have decayed to 
insignificantly small levels while others are still active, and the problem would be 
classified as stiff. If, on the other hand, the integration interval is limited to 
l/maxlRe(hi)l, the problem would not be considered stiff. 

2 



1. Introduction 

In this discussion we have assumed that all eigenvalues have negative real 
parts. Some of the Re&) may be nonnegative, so that some solution components 
are nondecaying. However, the problem is still considered stiff if no eigenvalue 
has a real part that is both positive and large in magnitude and at least one 
eigenvalue has a real part that is both negative and large in magnitude (ref. 7). 
Because the {hi} are, in general, not constant, the property of stiffness is local in 
that a problem may be stiff in some intervals and not in others. It is also relative in 
the sense that one problem may be more stiff than another. A quantitative 
measure of stiffness is usually given by the stifmess ratio max[-Re(hi)]/min 
[-Re&)]. This measure is also local for the reason given previously. Another 
standard measure for stiffness is the quantity max[-Re(&)l[&,d - 501. This 
measure is more relevant than the previous one when Isend - $01 is a better 
indicator of the average “resolution scale” for the problem than l/min[-Re(hi)]. 
(In some cases min[-Re(hi)] = 0.) 

The difficulty with stiff problems is the prohibitive amounts of computer time 
required for their solution by classical ODE solution methods, such as the popular 
explicit Runge-Kutta and Adams methods. The reason is the excessively small 
step sizes that these methods must use to satisfy stability requirements. Because 
of the approximate nature of the solutions generated by numerical integration 
methods, errors are inevitably introduced at every step. For a numerical method 
to be stable, errors introduced at any one step should not grow unbounded as the 
calculation proceeds. To maintain numerical stability, classical ODE solution 
methods must use small step sizes of order l/max[-Re(hi)] even after the rapidly 
decaying components have decreased to negligible levels. Examples of the step 
size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems 
arising in combustion chemistry are given in references 8 and 9. Now, the size of 
the integration interval for the evolution of the slowly varying components is of 
order l/min[-Re(hi)]. Consequently, the number of steps required by classical 
methods to solve the problem is of order max[-Re(&)]/min[-Re(&)], which is 
very large for stiff ODE’S. 

For stiff problems the LSODE package uses the backward differentiation 
formula (BDF) method (e.g., ref. lo), which is among the most popular currently 
used for such problems (ref. 11). The BDF method possesses the property of stiff 
stability (ref. 10) and therefore does not suffer from the stability step size constraint 
once the rapid components have decayed to negligible levels. Throughout the 
integration the step size is limited only by accuracy requirements imposed on the 
numerical solution. Accuracy of a numerical method refers to the magnitude of 
the error introduced in a single step or, more precisely, the local truncation or 
discretization error. The local truncation error & at & is the difference between 
the computed approximation and the exact solution, with both starting the 
integration at the previous mesh point tn-1 and using the exact solution y (&-I) 
as the initial value. The local truncation error on any step is therefore &e error 
incurred on that step under the assumption of no past errors (e.g., ref. 12). 

The accuracy of a numerical method is usually measured by its order. A 
method is said to be of order 4 if the local truncation error varies as hi+’. More 

3 



1. Introduction 

precisely, a numerical method is of order 4 if there are quantities C and h, (> 0) 
such that (refs. 3 and 13) 

for all 0 < h, I h,, 

where is an N-dimensional column vector containing the absolute values of 
the dj,n (i = 1, ...,N). The coefficient vectorc may depend on the function defining 
the ODE and the total integration interval, but it should be independent of the step 
size h, (ref. 13). Accuracy of a numerical method refers to the smallness of the 
error introduced in a single step; stability refers to whether or not this error grows 
in subsequent steps (ref. 7). 

To satisfy accuracy requirements, the BDF method may have to use small step 
sizes of order l/max(Re I&l) in regions where the most rapid exponentials are 
active. However, outside these regions, which are usually small relative to the 
total integration interval, larger step sizes may be used. 

The LSODE package also includes the implicit Adams method (e.g., refs. 4 and 
IO), which is well suited for nonstiff problems. Both integration methods belong 
to the family of linear multistep methods. As implemented in LSODE these 
methods allow both the step size and the method order to vary (from I to 12 for 
the Adams method and from 1 to 5 for the BDF method) throughout the problem. 
The capability of dynamically varying the step size and the method order is very 
important to the efficient use of linear multistep methods (ref. 14). 

The LSODE package consists of 2 1 subprograms and a BLOCK DATA module. 
The package has been designed to be used as a single unit, and in normal 
circumstances the user needs to communicate with only a single subprogram, also 
called LSODE for convenience. LSODE is based on, and in many ways resembles, 
the package GEAR (ref. 1 3 ,  which, in turn, is based on the code DIFSUB, written 
by Gear (refs. 10 and 16). All three codes use integration methods that are based 
on a constant step size but are implemented in a manner that allows for the step 
size to be dynamically varied throughout the problem. There are, however, many 
differences between GEAR and LSODE, with the following important 
improvements in LSODE over GEAR: (1) its user interface is much more 
flexible; (2) it is more extensively modularized; and ( 3 )  it uses dynamic storage 
allocation, different linear algebra modules, and a wider range of error types (ref. 
17). Most significantly, LSODE has been designed to virtually eliminate the need 
for user adjustments or modifications to the package before it can be used 
effectively. For example, the use of dynamic storage allocation means that the 
required total storage is specified once in the user-supplied subprogram that 
communicates with LSODE; there is no need to adjust any dimension declarations 
in the package. This feature, besides making the code easy to use, minimizes the 
total storage requirements; only the storage required for the user's problem needs 
to be allocated and not that called for by a code using default values for parameters, 
such as the total number of ODES, for example. The many different capabilities 
of the code can be exploited quite simply by setting values for appropriate 

4 



1. Introduction 
parameters in the user’s subprogram. Not requiring any adjustments to the code 
eliminates the user’s need to become familiar with the inner workings of the code, 
which can therefore be used as a “black box,” and, more importantly, eliminates 
the possibility of errors being introduced into the modified version. 

The remainder of this report is organized as follows: In chapter 2 we describe 
the numerical integration methods used in LSODE and how they are implemented 
in practice. The material presented in this chapter is based on, and closely 
follows, the developments by Gear (refs. 10 and 18 to 20) and Hindmarsh (refs. 1, 
2, 15, 21, and 22). Chapter 3 describes the features and layout of the LSODE 
package. In chapter 4 we provide a detailed guide to its usage, including possible 
user modifications. The use of the code is illustrated by means of a simple test 
problem in chapter 5. We conclude this report with a brief discussion on code 
availability in chapter 6. 

5 





Chapter 2 
Description and Implementa- 
tion of Methods 
2.1 Linear Multistep Methods 

The numerical methods included in the packaged code LSODE generate 
approximate solutions X to the ordinary differential equations (ODE'S) at discrete 
points & (n = 1,2, ...). Assuming that the approximate solutions L+ have been 
computed at the mesh points 5n-j (j = lY2, ...), these methods advance the solution 
to the current value & of the independent variable by using linear multistep 

. formulas of the type 

j=l j = O  

where the current approximate solution vector 41, consists of N components, 

and the superscript T indicates transpose. In equation (2. l), fn-i [= is the 
approximation to the exact derivative vector at cn+, y(&+) [= f( y(cn+))], where 
for notational convenience the 5 argument off has b&n droppedrthe coefficients 
{a,} and {pi} and the integers K1 and K2 are associated with a particular methd, 
and h, (= tn - &-I) is the step size to be attempted on the current step [5n-1,&]. 
The method is called linear because the {Yj} and { f i }  occur linearly. It is called 
multistep because it uses information from several previous mesh points. The 
number max(K1, K2) gives the number of previous values involved. 

The values K1 = 1 and K2 = q - 1 produce the popular implicit Adams, or 
Adams-Moulton (AM), method of order q: 

7 



(2.6a) 

(2.6b) 



2.2 Corrector Iteration Methods 
methods are given by Gear (ref. 10) for q 5 6 .  In equation (2.5), although the 
subscript n has been attached to the step size h, indicating that h, is the step size to 
be attempted on the current step, the methods used in LSODE are based on a 
constant h. When the step size is changed, the data at the new spacing required to 
continue the integration are obtained by interpolating from the data at the original 
spacing. Solution methods and codes that are based on variable step size have 
also been developed (refs. 17,23, and 24) but are not considered in the present 
work. 

2.2 Corrector Iteration Methods 

If Po = 0, the methods are called explicit because they involve only the known 
values {&} and {&+}, and equation (2.1) is easy to solve. If, however, 
Po # 0, the methods are called implicit and, in general, solution of equation (2.1) is 
expensive. For both methods, equations (2.3) and (2.4), Po is positive for each q 
and because f is, in general, nonlinear, some type of iterative procedure is needed 
to solve equation (2.5). Nevertheless, implicit methods are preferred because they 
are more stable, and hence can use much larger step sizes, than explicit methods 
and are also more accurate for the same order and step size (refs. 4, 10, and 12). 
Explicit methods are used as predictors, which generate an initial guess for X. 
The implicit method corrects the initial guess iteratively and provides a reasonable 
approximation to the solution of equation (2.5). 

The predictor-corrector process for advancing the numerical solution to & 
therefore consists of first generating a predicted value, denoted by a'], and then 
correcting this initial estimate by iterating equation (2.5) to convergence. That is, 
starting with the initial guess ~ ' 1 ,  approximations am] (m = 1,2, ...m are 
generated (by using one of the techniques discussed below) until the magnitude of 
the difference in two successive approximations approaches zero within a specified 
accuracy. The quantity am] is the approximation obtained on the mth iteration, 
the integer M is the number of iterations required for convergence, and we accept 
g[MJ as an approximation to the exact solution y at Cn and therefore denote it by 
X although, in general, it does not satisfy equagon (2.5) exactly. 

At each iteration m the quantity h,Zp1, which is defined here, is computed 
from ~ " ' 1  by the relation 

Now, as discussed by Hindmarsh (ref. 21) and shown later in this section, if am] 
converges as m -+ 00, the limit, that is, , must be a solution of 

equation (2.5) and Sz1 converges to f ,  [= €&)I, the approximation to - y(en). 

Em1 lim Y n  
m-w- 

9 



2. Description and implementation of Methods 

Hence h y[" l  is the mth estimate for hnfn and lim h y["] = h,&. The predicted 

value of h&, denoted by h y lo1 ,  is also obtained from equation (2.7) (by setting 

m = 0). In practice, we terminate the calculation sequence at a finite number M of 
[MI iterations and accept as an approximation to h& the quantity hn%n hn%, , 

which is obtained from dw by using equation (2.7). Note that %,is only an 
approximation to fn because Gw does not, in general, satisfy equation (2.5) 
exactly (see eqs. (2.5) and (2.7)). Moreover, because TLM] is defined to satisfy 
the solution method, in the sense of equation (2.7), it is not necessarily equal to 
f(Y[nMl). Therefore 4lff"l and %LMl do not necessarily satisfy the ODE, equa- 
tion (1. l). Thus, in practice, to advance the solution, the methods use the {% } (e.g., 
see eqs. (2.8a) and (2.8b)), rather than the { f j }  as written in equation (2.1), 

After convergence of the estimates $"'I, we could define TiM] to be equal to 
f ( ~ ! ) ,  so that G'l and 45fYIl satisfy the ODE exactly. However, besides being 
more expensive because it will require one derivative evaluation, performing this 
operation is actually less stable for stiff equations than using equation (2.7) 
(ref. 25). 

The predicted value at cn, do], is generated by a qth-order explicit formula 
similar to equations (2.3) and (2.4) (refs. 18 and 20): 

m-00 n-n n -n 

n -n 

j=1 

for the AM method of order q and 

(2.8a) 

(2.8b) 

for the BDF method of order q. In these two equations ' n - j  is the approximation 
to fn-j computed on the step [E,n-j-l,cn-j]. The coefficients {a;} and {p;} are 
selected such that equation (2.8a) or (2.8b) will be exact if the solution to 
equation (1.1) is a polynomial of degree q or less. 

The predictor step for the two methods can be generalized trivially as 

(2.9) 

where y ~ *  is given by the right-hand sides of equations (2.8a) and (2.8b), 
respectiGIy, for the Ah4 and BDF methods. 

10 



2.2. Corrector Iteration Methods 

To correct the initial estimate given by equation (2.9), that is, to solve 
equation (2.5), LSODE includes a variety of iteration techniques-functional, 
Newton-Raphson, and a variant of Jacobi-Newton. 

2.2.1 Functional Iteration 

To derive the functional iteration technique, also called simple iteration 
(refs. 11 and 26) and successive substitution (ref. 27), we rewrite equation (2.5) as 
follows: 

where 

The (m + 1)th estimate, Gm+ll (m = O , l ,  ..., M-1), is then obtained from 
equation (2.10) by (e.g., ref. 27) 

. [m+l] 
Now equation (2.7) gives the following expression for hnyn 

Comparing equations (2.12) and (2.13) gives 

for functional iteration. 

We now define’ the vector function g(y) - -  by 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

which, upon using equation (2.7), gives 

11 



2. Description and Implementation of Methods 

(2.16) 

By using equation (2.15) we can rewrite the functional iteration equation (2.12) as 
follows: 

Finally the combination of equations (2.14) and (2.16) produces the following 

functional iteration procedure for hnk, : 

Equation (2.17) is simple to use, but it converges only linearly (ref. 27). In 
addition, for successful convergence the step size may be restricted to very small 
values for stiff problems (refs. 4, 10, 12, 26, and 28), as shown here. By using 
equation (2.14) we can rewrite equation (2.16) as 

for m 2 1. Hence, equation (2.17) can be rewritten as 

By using the Lipschitz condition, equation (1.3), we get the following relation 
from equation (2.20): 

which shows that the iteration converges, that is, the successive differences 

12 



2.2. Corrector Iteration Methods 

decrease, only if 

(h,(Poa 1- (222) 

Now stiff problems are characterized by, and often referred to as systems with, 
large Lipschitz constants (e.g., refs. 4, 12, and 26), and so equation (2.22) restricts 
the step size to very small values. Indeed, the restriction imposed by this 
inequality on h, is exactly of the same form as that imposed by stability requirements 
on classical methods, such as the explicit Runge-Kutta method (refs. 4 and 26). 
For this reason, when functional iteration is used, the integration method is 
usually said to be explicit even though it is implicit (ref. 17). 

2.2.2 Newton-Raphson Iteration 

Newton-Raphson (NR) iteration, on the other hand, converges quadratically 
and can use much larger step sizes than functional iteration (refs. 27,29, and 30). 
Rapid improvement in the accuracy of the estimates is especially important 
because the corrector is iterated to convergence. The reason for iterating to 
convergence is to preserve the stability characteristics of the corrector. If the 
correction process is terminated after a fixed number of iterations, the stability 
characteristics of the corrector are lost (refs. 4 and 12), with disastrous consequences 
for stiff problems. 

To derive the NR iteration procedure, we rewrite equation (2.5) as 

(2.23) 

so that solving equation (2.5) is equivalent to finding the zero of E. The quantity 
B a r n $  is the residual vector on the mth iteration; that is, it is the amount by 
which ~ m l  fails to satisfy equation (2.5). To obtain the (m + 1)th estimate, we 
expand equation (2.23) in a Taylor series about the mth estimate, neglect the 
second and higher derivatives, and set Bdm+’])  = 0 because we seek a ~ m + ’ l  
that produces this result (e.g., ref. 27). Performing these operations and then 
rearranging terms give the following relation for the NR iteration technique: 

(2.24) 

where the NXN matrix P is given by 

13 



2. Description and Implementation of Methods 

In equation (2.25), I is the NxN identity matrix and J is the Jacobian matrix, 
equation (1 3. Comparing equations (2.15) and (2.23) shows that 

so that equation (2.24) can be rewritten as follows: 

(2.27) 

The NR iteration procedure for h,%’, is derived by subtracting equation (2.7) 
from equation (2.13) and then using equation (2.27). The result is 

(2.28) 

This iteration will converge provided that the predicted value is sufficiently 
accurate (refs. 4 and 12). The prediction method, equation (2.9), provides a 
sufficiently accurate initial estimate that the average number of iterations per step 
is less than 1.5 (ref. 7). In fact, the predictor is generally as accurate as the 
corrector, which is nonetheless needed for numerical stability. However, much 
computational work is required to form the Jacobian matrix and to perform the 
linear algebra necessary to solve equation (2.27). Now, because the Jacobian does 
not appear explicitly in the ODE’S, equation (1. I), or in the solution method, 
equation (2.5), J need not be very accurate. Therefore, for problems in which the 
analytical Jacobian matrix is difficult or impossible to evaluate, a fairly crude 
approximation such as the finite-difference quotient 

is adequate. In equation (2.29), A 5  is a suitable increment for thejth component 

Inaccuracies in the iteration matrix may affect the rate of convergence of the 
solution but not the solution if it converges (refs. 4 and 21). Hence this matrix 
need only be accurate enough for the iteration to converge. This beneficial fact 
can be used to reduce the computational work associated with linear algebra, as 
described in chapter 3. 

of y. 

14 



2.2. Corrector Iteration Methods 
2.2.3 Jacobi-Newton Iteration 

Jacobi-Newton (JN) iteration (ref. 31), also called Jacobi iteration (ref. 32), is 
obtained from Newton-Raphson iteration by neglecting all off-diagonal elements 
of the Jacobian matrix. Hence for JN iteration 

0, i # j  
J. .  = (2.30) 

This technique is as simple to use as functional iteration because it does not 
require any matrix algebra. Also, it converges faster than functional iteration but, 
in general, not as fast as NR iteration. 

A method closely resembling JN iteration is implemented as a separate method 
option in LSODE. It is like JN iteration in that it uses a diagonal approximation D 
to the Jacobian matrix. However, the diagonal elements Dii are, in general, 
different from Jii and are given by the difference quotient 

(2.3 1) 

where the increment vector A I  = 0.lpo - g(YJp1). If J is actually a diagonal matrix, 
Dii = Jii + O(Ayi?), but, in general, Dii effectively lumps together the various 
elements { J g }  in row i of J. 

2.2.4 Unified Formulation 

The different iteration methods can be generalized by the recursive relations 

(2.32) 

and 

(2.33) 

where P depends on the iteration method. For functional iteration P = I, and for 
NR and JN iterations P is given by equation (2.25), where J is the appropriate 
Jacobian matrix, equation (1.5), (2.30), or (2.31). 

15 





23 Matrix Formulation 

2.3 Matrix Formulation 

The implementation of linear multistep methods is aided by a matrix formulation 
(ref. 21). This formulation, constructed by Gear (ref. 18), is summarized here. 

To solve for X, and h&by using equations (2.35) to (2.37), we need, and 

thereforemusthavesaved, t h e l = q +  1 columnvectorsX,-1, hngn-l, hn4n-2,..., 
and hngn-, for t h e m  method of order q, or L-1, x-2, ..., X,*, and hngn-l 
for the BDF method of order 4. Hence for the AM method of order 4 we define 
the NxL history matrix wn-l at gn-l by 

that is, 

wn-l = (2.39) 



The matrix formulations for wiol and w, are derived as follows: Substituting 
the expression for go]. equation (2.8a) or (2.8b), into that for h,gyl, equa- 
tion (2.35), and then using equation (2.6a) or (2.6b) give 

for the AM method of order q and 

(2.42b) P i  . a.- a. 
h n ~ ~ ]  =z( ' Po '1 -n- Y J + -hnyn-l P O  

J = 1  

for the BDF method of order q. Equations (2.8a) and (2.42a), or (2.8b) and 
(2.42b), that is, the prediction process, can be rewritten as the matrix equation 

w[ol n - -w,-p> (2.43) 

where the LxL matrix B depends on the solution method. For the AM method of 
order q, it is given by 

( 1  0 0 0  . . .  0 0 )  

p; 

p; 0 1 .  . . 0 0  

P ; - p l  

P O  

P O  

1 0 .  . . 0 0 

B = l  . 
. .  
. .  

g 0 0 .  16 P O  

18 



23 Matrix Formulation 

and for the BDF method of order q, 

The 

where 

for t h e  

B ,= 

; corrector 

wJml, the 

: AM metl 

* 
a1 

P; 
* 

a 2  

a 3  
* 

* 
xq-1 

aq 
* 

* 
a1 - a1 

PO  

* 
a2 - a 2  

P O  

a 3  - a3 
PO 

* 

* 
aq-1 - aq-1 

P O  

aq - aq 

P O  

* 

1 0 0  . . .  0 

0 0 0  . . .  0 

0 1 0  . . .  0 

0 0 1  . . .  0 

_ - - . _ . .  

. . . . . . . 

. . . . .  1 .  

0 0 0  . . .  1 

0 0 0  . . .  0 

' equation, equation (2.36), can be expressed in 1 

. history matrix on the mth 

iod and by 

iteration, is given by 

natrix 

1 

(2.44b) 

form as 

(2.45) 

(2.46a) 

19 



for the BDF method, - k is the L-dimensional vector 

and P depends on the iteration technique, as described in section 2.2.4. 
The matrix formulation of the methods can be summarized as follows: 

Predictor: 

} m=0,1, ..., M-I. 

w,=w, [MI . 

2.4 Nordsieck’s History Matrix 

(2.46b) 

(2.47) I 

(2.48) 

(2.49) I 

(2.50) 

Instead of saving information in the form w,l, equation (2.38a) or (2.38b), 
Gear (ref. 18) suggested making a linear transformation and storing the matrix 
zn-l given by 

where the LxL transformation matrix Q is nonsingular. In particular, Q is chosen 
such that the matrix representation suggested by Nordsieck (ref. 33) is obtained: 



2.4 Nordsieck‘s History Matrix 

that is, the NXL matrix zn-l is given by 

(2.53) 

In equation (2.53),*?,-1 is thejth derivative of the approximating polynomial for 
Yi,*l. Because scaled derivatives h,&b?-l/j! are used, Q is independent of the 
step size. However, Q depends on the solution method. The N rows of zn-l are 
numbered from 1 to N, so that the ith row (i = 1, ...m contains the q + 1 scaled 
derivatives of the ith component, Yi,+l, of &-1. The q + 1 columns are, however, 
numbered from 0 to q, so that the column number corresponds to the order of the 
scaled derivative stored in that column. Thus thejth column (j = O,l, ...,q), which 
we denote by the vector &-lo>, contains the vector hB$-l/j!. The Nordsieck 
matrix formulation of the method is referred to as the “normal form of the 
method” (ref. 10). 

Applying the appropriate transformation matrix Q to the predictor equation, 
equation (2.48), gives 

where 

(2.55) 

is the predicted NxL Nordsieck history matrix at & and 

21 



2. Description and Implementation of Methods 

A = Q-~BQ. (2.56) 

The LxL prediction matrix A provides a qth-order approximation to zhol in terms 
of z,-1 and is therefore the lower-triangular Pascal triangle matrix (ref. lo), with 
element A0 given by 

l o ,  i < j  

where ( ;) is the binomial coefficient, defined as 

Hence 

A :  

0 0 0 . . .  . .  0 

1 0 0 . . . .  . 

2 1 . .  

3 3 1 o . . .  

0 0 

1 

9 1 

(2.57) 

(2.58) 

(2.59) 

The principal advantage of using the Nordsieck history matrix is that the matrix 
multiplication implied by equation (2.54) can be carried out solely by repeated 
additions, as shown by Gear (ref. 10). Hence computer multiplications are 



2.4 Nordsieck’s History Matrix 
avoided, resulting in considerable savings of computational effort for large 
problems. Also A need not be stored and zhol overwrites z,1, thereby reducing 
memory requirements. 

Because 

(i+1) j+ l  = ( j+ l  ) + (;) 
and Aii =Ai0 = 1 for all i, the product zA is computed as follows (refs. 10 and 15): 

For k=0,1, ..., 4-1, do: 
For j = q , q - l ,  ..., k + l ,  do: 

zi,i-l tZi , i+zi , i - l ,  i= l ,  ... , N .  
(2.61) 

In this equation the subscripts n and n-1 have been dropped because the z values 
do not indicate any one value of E, but represent a continuous replacement process. 
At the start of the calculation procedure given by equation (2.61), z = zn-l; and at 
the end z = zhol. The arrow “c” denotes the replacement operator, which means 
overwriting the contents of a computer storage location. For example, 

means that zi,4 is added to zi,3 and the result replaces the contents of the location 
z ~ .  The total number of additions required in equation (2.61) is Nq(q + 1)/2. The 
predictor step is a Taylor series expansion about the previous point L-1 and is 
independent of both the integration method and the ODE. 

Another important advantage of using Nordsieck‘s formulation is that it makes 
changing step size easy. For example, if at & the step size is changed from h, to 
rh,, the new history matrix is obtained from 

z, -,C, 

where the LXL diagonal matrix C is given by 

C =  

1 0 
r 

2 r 

(2.62) 

(2.63) 

23 



2. Description and Implementation of Methods 

The rescaling can be done by multiplications alone, as follows: 

R = l  
For j = l ,  ...,q, do: 

R t rR 
zi,j + Z ~ , ~ R ,  i = l ,  ..., N .  

The corrector equation corresponding to equation (2.49) is given by 

where ziml, the Nordsieck history matrix on the mth iteration, is given by 

and 

(2.64 

(2.65) 

(2.66) 

(2.67) 

is an L-dimensional vector 

4 = (Q,, Q, , ..., Qq). (2.68) 

For the two solution methods used in LSODE the values of 1 are derived in 
references 21 and 22 and reproduced in tables 2.1 and 2.2. Methods expressed in 
the form of equations (2.54) and (2.65) are better described as multivalue or L- 
value methods than multistep methods (ref. 10) because it is the number L of 
values saved from step to step that is significant and not the number of steps 
involved. 

The two matrix formulations described here are related by the transformation 
equations (2.51), (2.54), and (2.65) and are therefore said to be equivalent 
(ref. 10). The equivalence means that if the step [Cn-1,&J is taken by the two 
methods with equivalent past values wn-l and zn-l, that is, related by equa- 
tion (2.51) through Q, then the resulting solutions w, and z, will also be related 
by equation (2.51) through Q. apart from roundoff errors (ref. 21). The 
transformation does not affect the stability properties or the accuracy of the 

24 



TABLE 2.1 .-METHOD COEFFICIENTS FOR ADAMS-MOULTON METHOD IN NORMAL FORM OF ORDERS 1 TO 12 

4 Qo el &2 e3 '4 &5 '6 &7 '8 Q1O Q l  1 2 

2 2  l 1  

3 T ?  l i  3 

1 1  1 

1 1 

5 3 1 1 

1 

5 

17 1 

- 1 1  1 4 12 3 24 1 -  

1 -  1 - 25 - 35 - 

95 137 5 - 
203 - 49 - 7 - 7 -  1 19087 49 - 

5 7 2 0  24 72 48 120 
251 

1 - TO 720 6 -  288 l 1 2 0 5  96 

7 -  1440 5040 60480 w 270 192 ' 144 

1 - 1 - 23 - 469 967 - 7 
17280 1 %  540 2880 90 2160 1260 40320 

1 1 1070017 761 29531 267 - 1069 - _. 13 - 3628800 560 30240 640 9600 160 6720. 8960 362880 

29 1 7129 6515 4523 19 - L _  3013 5 - 25713 1 - - - 
l o  89600 5040 6048 9072 128 

7381 177133 84095 341693 8591 7513 121 11 - 1 1  - 1 26842253 - 1 1  - 95800320 
83711 190553 341747 139381 242537 1903 10831 11 - 1 1 ___ 1 4777223 

3 

103680 1344 96768 &6 3628800 

5040 151200 145152 1814400 207360 1209600 193536 272160 7257600 39916800 

h) " 17418240 ' 55440 151200 518400 604800 4354560 201600 9676800 120960 207360 6652800 479001600 
VI 



2. Description and Implementation of Methods 

TABLE 2.2.-METHOD COEFFICIENTS FOR BACKWARD 
DIFFERENTIATION FORMULA METHOD IN 

NORMAL FORM OF ORDERS 1 TO 6 

QO 

1 
- z 
3 

6 
11 

24 
50 
120 
274 

720 
1764 

- 
- 
- 
- 
- 

- 

Ql - 
1 

3 
3 

11 
11 

50 
50 
274 
274 

- 
- 
- 
- 
- 
- 
- 

1764 
1764 - 

Q2 

- 
1 
3 
- 

6 
11 

35 
50 

274 

- 
- 
- 
- 
225 

1624 
- 
1764 

- 
Q3 

735 
1764 

Q4 Q5 Q6 

1 
50 

15 1 
274 274 

175 21 1 
1764 1764 1764 

- 

- -  

- - -  

method, but roundoff properties and computational effort depend on the 
representation used, as discussed by Gear (ref. 10). 

The first two columns of z, and w, are identical (see eqs. (2.38a), (2.38b), and 
(2.52)), and so Qo = Po and 41 = 1. For the same reason the corrector iteration 
procedures for & and h,%, remain unchanged (see eqs. (2.45), (2.47), and 
(2.65)). However, to facilitate estimation of the local truncation error, a different 
iteration procedure than that given by equation (2.65) is used. To derive the new 
formulation, zim+l1 is written as 

or 

(2.69) 

Substituting the difference z P l 1  - zkl obtained from equation (2.65) into equa- 
tion (2.69) produces 

\ / j=O 

where c$,"'+'~ is defined as 

26 



2.4 Nordsieck's History Matrix 

(2.71) 

It is clear from this equation that 

Equation (2.70) can be used to rewrite - g (arn1), equation (2.16), as follows: 

because 41 = 1. 
Finally, because only the first two columns of z, enter into the solution of equa- 

tion (2.5), the successive corrections can be accumulated and applied to the 
remaining columns of z, after convergence. Clearly, not updating all columns of 
the Nordsieck history matrix after each iteration results in savings of computational 
effort, especially when a high-order method is used and/or the number of ODE'S 
is large. For additional savings of computer time the history matrix is updated 
only if both (1) the iteration converges and (2) the converged solution satisfies 
accuracy requirements. 

The predictor-corrector formulation utilized in LSODE can be summarized as 
follows: 

Predictor: 

Corrector: 

(2.74) 

27 



2. Description and Implementation of Methods 

(2.76) 

2.5 Local Truncation Error Estimate ancl Controll 

The local truncation error is defined to be the amount by which the exact 
solution Y (5) to the ODE system fails to satisfy the difference equation of the 
numericarmethod (refs. 4, 10, 12, and 26). That is, for the linear multistep 
methods, equation (2. I), the local truncation error vector Si, at 5, is the residual in 
the difference formula when the ap roximations (Xj} and {t]} are replaced by the 
exact solution and its derivative! In LSODE, however, the basic multistep 
formula is normalized by dividing it by 

j=O 

'Although the corrector convergence test is performed before the local truncation error 
test (which is done only if the iteration converges), we discuss the accuracy test first 
because the convergence test is based on it. 

*As discussed in chapter 1, another commonly used definition for the local truncation 
error is that it is the error incurred by the numerical method in advancing the approximate 
solution by a single step assuming exact past values and no roundoff errors (refs. 12, 13, 
and 21). That is, & is the difference between the numerical approximation obtained by 
using exact past values (Le., { y(cnj)] and [ y&-,)]) and the exact solution ~(5"): - - - 

t 

d" = 1" - y(c"), (2.77) 
where, for example, 

(2.78) 
j=1 

for the BDF method of order q. For an explicit method the local truncation error given by 
equation (2.77) and that obtained by using the definition given in the text above (Le., the 
residual of eq. (2.1)) have the same magnitude. However, for an implicit method the two 
quantities are only approximately proportional to one another (ref. 4), although they agree 
asymptotically in the limit of small step size. 

28 



2.5 Locpl h c a t i o n  Error Estimate and Control 
for reasons given by Henrici (ref. 29) and Gear (ref. 10); however, see Lambert 
(ref. 4). For example, the BDF method of order q, equation (2.4), can be 
expressed in this form as 

where q = - 1. The local truncation error for this method is then given by 

(2.79) 

(2.80) 

where &, consists of N components 

If we assume 
order, each yi(E,, 
Taylor series ah  
be stated compai 

that each yi (i 
j) (i = 1, ..., N, 
mt E,,. Upon c 
ctly as 

= 1, ...m possesses derivatives of arbitrarily high 
j = 1, ...,q) in equation (2.80) can be expanded in a 
ollecting terms the resulting expression ford,  can 

m 

(2.82) 
k=O 

where the { c k }  are constants (e.g., ref. 10). A method is said to be of order q if 
CO = C1= ... = C4 = 0, and Cq+l # 0. The local truncation error is then given by 

Ci, = cq+1h$+1y(q+l)(5,)+ 0 ( h . 4 + 2 ) 7  (2.83) 

where the terms C4+1 and Cq+1h,f+l ~(q'")(E,n) are, respectively, called the error 
constant and the principal local truncation error (ref. 4). In particular, for the BDF 
method of order q in the normalized form given by equation (2.79) (refs. 22 
and 29) 

1 
cq+1= q+l' (2.84a) 

For the implicit Adams method of order q in normalized form (ref. 22) 

29 



2. Description and Implementation of Methods 

cq+l = 140 (4 + 1) - 40 (4)). (2.84b) 

where Qo(q) and @o(q + 1) are, respectively, the zeroth component of the coefficient 
vectors for the AM method in normalized form of orders q and (q + 1). 

The (q + 1)th derivative at c,, y(qf')(cn), is estimated as follows: As discussed 
in section 2.4, at each step the solution method updates the Nordsieck history 
matrix z,: 

(2.85) 

For either method of order q the last column of z,, zn(4), contains the vector 
hJL(q)/q!, which is the approximation to hz y(q)(c,)/q!. Now the prediction step 
being a Taylor series method of order q does not alter the last column of z,-i, 
namely the vector hjx($,/q!. Hence the last column of zAol, zLol(q), contains the 
vector h$&Ll/q!. The difference, &) - dol(q), is given by 

by using the mean value theorem for derivatives. However, equation (2.76) gives 
the following expression for ~ ( q )  - zLol(q): 

Equating equations (2.86) and (2.87) gives the following approximation for 
h$+'dq+') if higher-order terms are neglected: 

(2.88) 

Substituting this equation into equation (2.83) and neglecting higher-order terms 
give the following estimate for &: 

In order to provide for user control of the local truncation error, it is normalized 
by the error weight vector E,, with element EWT,,, defined by 

30 



2.5 Locpl lhmcation Error Estimate and Control 

EWT~,, = RTOL~~Y~, , -~~  + ATOL,, (2.90) 

where the user-supplied local relative (RTOLi) and absolute (ATOLi) error toler- 
ances for the ith solution component are discussed in chapter 4. The solution X 
is accepted as sufficiently accurate if the following inequality is satisfied: 

(2.9 1) 

.7 

where 11.11 denotes the weighted root-mean-square (rms) norm, which is used for 
reasons discussed by Hindmarsh (ref. 15). Equation (2.91) can be rewritten as 

by using equation (2.89). If we define the test coefficient z(4,q) as 

the accuracy test, equation (2.92), becomes 
? 

llenll 5 z(q,q)- 

If we further define the quantity D4 by 

the accuracy test reduces to 

? 
D I 1 .  4 

T 
'H 

'he reasc 
rhen we 

m for u 
discuss 

sing 
step 

two 
size 

variables in 
and method 

the definition for 
order selection in 

z will become 
section 2.7. 

(2.92) 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

apparent 

31 



(2.100) 



2.7 Step Size and Method Order Selection and Change 

where 
ck = max(0.2~,-~, cm) (2.101) 

and 

is the estimated convergence rate (refs. 22 and 25). Clearly at least two iterations 
are required before cm can be computed. For the first iteration c& is set equal to 
the last value of c, from the previous step. For the first iteration of the very first 
step and, in the case of NR or JN iteration, after every update of the Jacobian 
matrix, c& is set equal to 0.7. Equation (2.100) assumes that the iteration 
converges linearly, that is, lim (E,+#,) = finite constant cy and essentially 

m-w- 
anticipates the magnitude of em one iteration in advance (ref. 15). Equation 
(2.101) shows that the convergence rate of the latest iteration is given much more 
weight than that of the previous iteration. The rationale for this decision is 
discussed by Shampine (ref. 25), who examined various practical aspects of 
implementing implicit methods. 

2.7 Step Size and Method Order Selection 
and Change 

Periodically the code attempts to change the step size and/or the method order 
to minimize computational work while maintaining prescribed accuracy. To 
minimize complications associated with method order and step size selection, the 
new order 4' is restricted to the values 4 - 1, 4, and 4 + 1, where 4 is the current 
order. For each q'the step size h'(q') that will satisfy exactly the local error bound 
is obtained by assuming that the highest derivative remains constant. The method 
order that produces the largest h' is used on the next step, along with the 
corresponding h', provided that the h' satisfies certain restrictions described in 
chapter 3. 

For the case 4' = 4, h'(q) is computed by setting D&') (= value of D, for step 
size h') = 1 (see eq. (2.96)), so that the local accuracy requirement is satisfied 
exactly. Then because d, varies as h,4'l (see eq. (2.83)), we get 

or 

1 , ,- 

(2.103) 

33 



2. Description and Implementation of Methods 

where r is the ratio of the step size to be attempted on the next step to its current 
value. The subscript “same” indicates that the same order used on the current step 
is to be attempted on the next step. 

For the case q‘ = 4 - 1, &(q - 1) is of order q, where the variable 4 - 1 indicates 
the method order for which the local truncation error is to be estimated, and 

where Cq = I Qo(q) - Qo(q - 1)1 for the AM method and l/q for the BDF method 
(refs. 22 and 29). Now, the last column of z,, z,(q), contains the vector h$&q)/q! 
(see eq. (2.85)), and so &(q - 1) is easily calculated. On using the rms norm, 
equation (2.91), the error test for 4’ = q - 1 becomes 

(2.105) 

If we define the test coefficient ~ ( q , q  - 1) as l/Cqq!, equation (2.105) can be 
written as 

1 
I 1, (2.106) 

where zi,Jq) is the ith element of ~,(q). The first variable in the definition for ‘I: 
gives the method order used on the current step. The second variable indicates the 
method order for which the local truncation error is to be estimated. 

The step size h’(4 - 1) to be attempted on the next step, if the order is reduced to 
4 - 1, is obtained by using exactly the same procedure that was utilized for the 
case q‘ = 4, that is, by setting Dq-l(h’) = 1. Because &(q - 1) varies as h i ,  the 
resulting step size ratio ‘down is given by 

1 

The subscript “down” indicates that the order is to be reduced by 1. 

34 

(2.107) 



2.7 Step Size and Method Order Selection and Change 
For the case q'= q + 1 the local truncation error &(q + 1) is of order q + 2 and is 

given by 

(2.108) 

where Cq+2 = I to(4 + 2) - to(q + 1)1 for t h e m  method and l/(q + 2) for the BDF 
method (refs. 22 and 29). This case is more difficult than the previous two cases 
because equation (2.108) involves the derivative of order q + 2. The derivative 

is estimated as follows. Equation (2.88) shows that the vector 4,& is 
@proximately proportional to h$+lGq+')/q!. We difference the quantity tqg 
over the last two steps and use the mean value theorem for derivatives to get 

Hence the error test for 4'= q + 1 becomes 

(2.1 10) 

where we have again used the ms norm and Vei,, is the ith component of V&. If 
we define the test coefficient z(q,q + 1) as 1/(Ce2q!tq), the error test, qua -  
tion (2. l lo), can be rewritten as 

(2.1 11) 

To solve for h'(q + l), we use the same procedure as for h'(q) and h'(q - 1). The 
resulting ratio rUp is given by 

35 



(2.1 12) 



2.8 Interpolation at Output Stations 

therefore important that in implementing the solution method provision be made 
for the efficient computation of the solution at the required output stations. 
Moreover, the procedure used for these computations should not adversely affect 
the efficiency of the integration beyond the output station. Such a situation arises, 
for example, if the method has to adjust the step size to “hit” the output station 
exactly. Because the Nordsieck history array is used to store past history 
information, the solution can be generated at the output stations quite easily, as 
described next. 

For each E,,,,,, the integration is continued until the first mesh point n for which 
2 Lut, and then the solution at LUt is obtained by interpolation. Now the 

solution and its scaled derivatives up to order 4;t+1 are available at cn. Here q;t+1 
is the order to be attempted on the next step, that is, [Cn,&+l]. Hence the solution 
at SOUt, X(LuJ, is computed by using a (q;+l)th-order Taylor series expansion 
about cn and is given by 

If we define the quantity r by 

(2.1 17) 

where h;t+1 is the step size to be attempted on the next step, equation (2.116) can 
be rewritten as 

(2.118) 

Now 

is the kth column ~ ( k )  of z,, and so equation (2.11 8) can be expressed compactly 
as 

37 



(2.120) 



2.9 Starting Procedure 

2.9 Starting Procedure 

At the outset of the integration, information is available at only the initial point 
50. Hence multistep methods cannot be used on the first step. The difficulty at 
the initial point is resolved easily by starting the integration with a single-step, 
first-order method. The Nordsieck history matrix zo at 50 is constructed fiom the 
initial conditions yo and the ODE'S as follows: - 

(2.123) 

where ho is the step size to be attempted on the first step. 
As the integration proceeds, the numerical solutions generated at the points 51, 

52, ... provide the necessary values for using multistep methods. Hence, as the 
numerical solution evolves, the method order and step size can be adjusted to 
their optimal values by using the procedures described in section 2.7. 

39 





Chapter 3 
Description of Code 
3.1 Integration and Corrector Iteration Methods 

The packaged code LSODE has been designed for the numerical solution of a 
system of first-order ordinary differential equations (ODE’S) given the initial 
values. It includes a variable-step, variable-order Adams-Moulton (AM) method 
(suitable for nonstiff problems) of orders 1 to 12 and a variable-step, variable- 
order backward differentiation formula PDF) method (suitable for stiff problems) 
of orders 1 to 5. However, the code contains an option whereby for either method 
a smaller maximum method order than the default value can be specified. 

Irrespective of the solution method the code starts the integration with a first- 
order method and, as the integration proceeds, automatically adjusts the method 
order (and the step size) for optimal efficiency while satisfying prescribed accuracy 
requirements. Both integration methods are step-by-step methods. That is, 
starting with the known initial condition ~ ( 5 0 )  at 50, where y is the vector of 
dependent variables, 5 is the independent ;&able, and 50 is ig initial value, the 
methods generate numerical approximations Y, to the exact solution y (E,n> at the 
discrete points Gn (n = 1,2, ...) until the end of the integration interval% reached. 
At each step [&-&,J both methods employ a predictor-corrector scheme, wherein 
an initial guess for the solution is first obtained and then the guess is improved 
upon by iteration. That is, startin with an initial guess, denoted by ~ ‘ 1 ,  
successively improved estimatesdmy(m = 1, ...,M) are generated until the iteration 
converges, that is, further iteration produces little or no change in the solution. 
Here &ml is the approximation computed on the mth iteration, and M is the 
number of iterations required for convergence. 

A standard explicit predictor formula-a Taylor series expansion method devised 
by Nordsieck (ref. 33)-is used to generate the initial estimate for the solution. A 
range of iteration techniques for correcting this estimate is included in LSODE. 
Both the basic integration method and the corrector iteration procedure are identified 
by means of the method flag h4F. By definition, h4F has the two decimal digits 
METH and MITER, and 

41 



3. Description of Code 

TABLE 3.1.-SUMMARY OF INTEGRATION METHODS INCLUDED IN LSODE 
AND CORRESWNDING VALUES OF METH, 

THE FIRST DECIMAL DIGIT OF MF 

METH Integration method 

I 
2 

Variable-step, variable-order. implicit Adams method of orders 1 to 12 
Variable-step, variable-order, implicit bxkward differentiation formula 

method of orders 1 to 5 

TABLE 3.2.4ORRECTOR ITERATION TECHNIQUES AVAILABLE IN LSODE 
AND CORRESPONDING VALUES OF MITER, 
THE SECOND DECIMAL DIGlT OF MF 

0 
1 
2 
3 

b4 
b5 

~~~~ 

Corrector iteration tcchniaue

Functional iteration
Modified Newton iteration with user-supplied analytical Jrroblan
Modified Newton iteration with internally generated numerical Jacobian
Modified Jacobi-Newton iteration with internally generated numerical

Modified Newton iteration with user-supplied banded Jacobian
Modified Newton iteration with internally generated banded Jacobian

Jacobiana

aModified Jacobi-Newton iteration with user-supplied analytical Jacobian can be.
performed by specifying MITER = 4 and ML = Mu = Ob (Le., a banded Jacobian
with bandwidth of I).

Jacobian matrix.
%e user must specify the lower (ML) and upper (MU) half-bandwidths of the

MF=lOxMETH+MITER, (3.1

where the integers METH and MITER indicate, respectively, the integration
method and the corrector iteration technique to be used on the problem. Table 3.1
summarizes the integration methods included in LSODE and the appropriate
values for METH. The legal values for MITER and their meanings are given in
table 3.2. The iteration procedures corresponding to MITER = 1 to 5 are
described as modified Newton iteration techniques because the Jacobian matrix is
not updated at every iteration.

3.2 Code Structure

The double-precision version of the LSODE package consists of the main core
integration routine, LSODE, the 20 subprograms CFODE, DAXPY, DDOT,
DGBFA, DGBSL, DGEFA, DGESL, DSCAL, DlMACH, EWSET, IDAMAX,
INTDY, PREPJ, SOLSY, SRCOM, STODE, VNORM, XElZRWV, XSETF, and

42

3.2 Code Structure

XSETUN, and a BLOCK DATA module for loading some variables. The single-
precision version contains the main routine, LSODE, and the 20 subprograms
CFODE, EWSET, INTDY, ISAMAX, PREPJ, RlMACH, SAXPY, SDOT,
SGBFA, SGBSL, SGEFA, SGESL, SOLSY, SRCOM, SSCAL, STODE,
WORh4, XERRWV, XSETF, and XSETUN. The subprograms DDOT,
DlMACH, IDAMAX, ISAMAX, RlMACH, SDOT, and WORM are function
routines-all the others are subroutines. The subroutine XERRWV is machine
dependent. In addition to these routines the following intrinsic and external
routines are used: DABS, DFLOAT, DMAX1, DMIN1, DSIGN, and DSQRT
by the double-precision version; ABS, AMAX1, AMIN1, FLOAT, SIGN, and
SQRT by the single-precision version; and MAXO, M I N O , MOD, and WRITE
by both versions.

Table 3.3 lists the subprograms in the order that they appear in the code and
briefly describes each subprogram. Among these, the routines DAXPY, DDOT,
DGBFA, DGBSL, DGEFA, DGESL, DSCAL, IDAMAX, ISAMAX, SAXPY,
SDOT, SGBFA, SGBSL, SGEFA, SGESL, and SSCAL were taken from the
LINPACK collection (ref. 34). The subroutines XERRW, XSETF, and
XSETUN, as used in LSODE, constitute a simplified version of the SLATEC
error-handling package (ref. 35).

The structure of the LSODE package is illustrated in figure 3.1, wherein a line
connecting two routines indicates that the lower routine is called by the upper one.
For subprograms that have different names in the different versions of the code,
both names are given, with the double-precision version name listed first. Also,
the names in brackets are dummy procedure names, which are used internally and
passed in call sequences. The routine F is a user-supplied subroutine that computes
the derivatives dyi/& (i = 1, ...,N), where yi is the ith component of y and Nis the
number of ODE’S. Finally, the user-supplied subroutine JAC computes the
analytical Jacobian matrix J (= af/ay), where f = dy/&.

The code has been arranged as much as possibl~in a “modular” fashion, with
different subprograms performing different tasks. Hehce the number of
subprograms is fairly large. However, this feature aids in both understanding and,
if necessary, modifying the code. To enhance the user’s understanding of the
code, it contains many comment statements, which are gfouped together in blocks
and describe both d e task to be performed next and theprocedure to be used. In
addition, each subprogram includes detailed explanatory notes, which describe
the function of the subprogram, the means of communication (i.e., call sequence
andor common blocks), and the input and output variables.

Each subprogram contains data type declarations for all variables in the routine.
Such declarations are useful for debugging and provide a list of all variables that
occur in a routine. This list is useful in overlay situations. For each data type the
variables are usually listed in the following order: variables that are passed in the
call sequence, variables appearing in common blocks, and local variables, in
either alphabetical order or the order in which they appear in the call sequence and
the common blocks.

43

TABLE 3.3.-DESCRTPTION OF SUBPROGRAMS USED IN LSODE

I Subprogram

Double-
precision
version

LSODE

INTDY

STODE

CFODE

PREPJ

I SOLSY

EWSET
VNORM
SRCOM

DlMACH
XERRWV
x s m
XSETUN
DGEFA

DGESL

DGBFA

DGBSL

DAXPY

DSCAL
DDOT
IDAMAX

Single-
precision
version

LSODE

tNmY

STODE

CFODE

PREPJ

SOLSY

EWSET
VNORM
SRCOM

R1 MACH
XERRWV
XSETF
XSETUN
SGEFA

SGESL

SGBFA

SGBSL

SAXPY

SSCAL
SDOT
ISAMAX

Description

Main core integration routine. Checks legality of input,
sets work array pointers. initializes work arrays. com-
putes initial integration step size, manages solutions
of ODE's. and returns to calling routine with solution
and errors.

Computes interpolated values of the specified derivative
of the dependent variables.

Advances the solution of the ODE's by one integration
step. Also, compute.. step size and method order to be
attempted on the next step.

stants for local error test and step size and method order
selection.

subprogram call for its LU-decomposition or computes
its inverse.

iteration.

Sets method coefficients for the solution and test con-

Computes the iteration matrix and either manages the

Manages solution of linear system arising from chord

Sets the error weight vector.
Computes weighted root-mean-square norm of a vector.
Savcs and restores contents of common blocks LSooOl

Computes unit roundoff of the computer.
Handles error messages.
Resets print control flag.
Resets logical unit number for error messages.
Performs LUdecomposition of a full matrix by Gaussian

Solves a linear system of equations using a previously

Performs LUdecomposition of a banded matnx by

Solves a linear system of equations using a previously

Forms the sum of one vector and another times a

Scales a vector by a constant.
Computes dot product of two vectors.
Identifies vector component of maximum absolute value.

and EHOOO 1.

elimination.

LU-decomposed full matrix.

Gaussian elimination.

LU-decomposed banded matrix.

constant

Calling

IDAMAX or
ISAMAX

EWSET

DSCAL or DAXPY or DDOT or
SSCAL SAXPY SDOT

3. Description of Code

3.3 Internal Communication

Communication between different subprograms is accomplished by means of
both call sequences and the two common blocks EHOOOl and LSOOO1. The
reason for using common blocks is to avoid lengthy call sequences, which can
significantly deteriorate the efficiency of the program. However, common blocks
are not used for variables whose dimensions are not known at compilation time.
Instead, to both eliminate user adjustments to the code and minimize total storage
requirements, dynamic dimensioning is used for such variables.

The common blocks, if any, used by each subprogram are given in tables 3.4
and 3.5 for the double- and single-precision versions, respectively. These tables
also list all routines called and referenced (e.g., an external function) by each
subprogram. Also, to facilitate use of LSODE in overlay situations, all routines
that call and reference each subprogram are listed. Finally, for each subprogram
the two tables give dummy procedure names (which are passed in call sequences
and therefore have to be declared external in each calling and called subprogram)
in brackets.

The variables included in the two common blocks and their dimensions, if
different from unity, are listed in table 3.6. The common blocks contain variables
that are (1) local to any routine but whose values must be preserved between calls
to that routine and (2) communicated between routines. The structure of the block
LSOOOl is as follows: All real variables are listed first, then all integer variables.
Within each group the variables are arranged in the following order: (1) those
local to subroutine LSODE, (2) those local to subroutine STODE, and (3) those
used for communication between routines. It must be pointed out that not all
variables listed for a given common block are needed by each routine that uses it.
For this reason some subprograms may use dummy names, which are not listed in
table 3.6.

To further assist in user understanding and modification of the code, we have
included in table 3.6 the names of all subprograms that use each common block.
For the same reason we provide in tables 3.7 and 3.8 complete descriptions of the
variables in EHOOO1 and LSOOO1, respectively. Also given for each variable are
the default or current value, if any, and the subprogram (or subprograms) where it
is set or computed. The length L E N W of the array WM in table 3.8 depends on
the iteration technique and is given in table 3.9 for each legal value of MITER.

3.4 Special Features

The remainder of this chapter deals with the special features of the code and its
built-in options. We also describe the procedure used to advance the solution by
one step, the corrective actions taken in case of any difficulty, and step size and
method order selection. In addition, we provide detailed flowcharts to explain the
computational procedures. We conclude this chapter with a brief discussion of the
error messages included in the code.

46

TABLE 3A.-ROUTINES 'WITH COMMON BLOCKS. SUBPROGRAMS, AND
CALLING SUBPROGRAMS IN DOUBLECPRECISION

VERSION OF LSODE

LSODE

CFODE
DAXPY

DDOT
DGBFA

DGBSL
DGEFA

DGESL
DSCAL
DIMACH
EWSET
I D m
INTDY
PREPJ

IPJACI
SOLSY

[SLVS]
SRCOM
STODE

WORM

XERRW
xsm -

x s m
BLOCK DATA

Common blocks
used

LSOoOl

EHOOOl
EHo00l
EHOOOl
EHOOOl LSOOOl

DlMACH EWSET
F INTDY JAC
PREPJ SOLSY
STODE WORM
XERRW

DAXPY DSCAL

DAXPY DDOT
DAXPY DSCAL.

DAXPY DDOT

IDAMAX

IDAMAX

mRRw
DGBFA DGEFA

DGBSL DGESL
F JAC WORM

CFODE F JAC
PREPJ SOLSY
WORM

Calling
~Ubprograms

STODE
DGBFA DGBSL

DGEFA DGESL
DGBSL DGESL
PREF'J

SOLSY
PREPJ

SOLSY
DGBFA DGEFA
LSODE
LSODE
DGBFA DGEFA
LSODE
STODE

STODE

LSODE

LSODE PREPJ

LSODE INTDY
STODE

TABLE 3.5.-ROUTINES WITH COMMON BLOCKS. SUBPROGRAMS, AND
CALLING SUBPROGRAMS IN SINGLE-PRECISION

VERSION OF LSODE

Subprogram
[Dummy

procedure name]

LSODE

CFODE
EWSET
INTDY
ISAMAX
PREPJ

[PJACI
R1 MACH
SAXPY

SDOT
SGBFA

SGBSL
SGEFA

SGESL
SOLSY

[SLVS]
SRCOM
SSCAL
STODE

VNORM

XERRWV
XSETF
XSETUN

Common blocks
used

LSOOOl

LSOOOI

LSOOOl

LSOOOl

EHOOOl LSOOOl

LSOOOl

EHOOO 1
EHOOO 1
EHOOOI

Subprograms
called and referenced

EWSET F INTDY
JAC PREPJ
RIMACH SOLSY
STODE VNORM
XERRWV

xF,RRwv

F JAC SGBFA
SGEFA VNORM

ISAMAX SAXPY

SAXPY SDOT
ISAMAX SAXPY

SAXPY SDOT
SGBSL SGESL

SSCAL

SSCAL

CFODE F JAC
PREPJ SOLSY
VNORhi

Calling
subprograms

STODE
LSODE
LSODE
SGBFA SGEFA
STODE

LSODE
SGBFA SGBSL

SGBSL SGESL
PREPJ

SGEFA SGESL

SOLSY
PREPJ

SOLSY
STODE

SGBFA SGEFA
LSODE

LSODE PREPJ

LSODE INTDY
STODE

common
block

EHOOOl

LSOOOl

Vuiabks (dimsion) subprosrum whae
used

MESFLG LUNIT

Variable

MESFLG

LUNlT

CONIT CRATE EL(13)
ELCO(13. 12) HOLD RMAX
TESC0(3,12) CCMAX EL0
" M I N HMXIHURC TN
UROUND ILLIN INIT LYH
LEWT LACm LSAVFLWM
LIWM MXSTEP -NIL
"NIL NTREP N S M T
" IALTHIKlpLMAx
ME0 NQNYH NSLP ICF
IERF'J IERSL JCUR JSTART
KFLAGL METH MITER
MAXORD MAXCOR MSBP
MXNCF N NQ NST NFJ3
NJE NOU

Dcdaiption

Integer flag, which controls
printing of tcrot messages from
code and has following values
and meanings:
0 No amr message is printed.
1 All emr messages ae printed.

Logical unit number for mcssagts
from code

SRCOM XERRWV
XSETF x s m
BLOCK DATA'

LSODE INTDY
PREPJ SOFSY
SRCOM STODE
B m K DATA'

%ouble-ptecision version only.

TABLE 3.7.-DESCRlPTION OF VARIABLES IN COMMON BLOCK EHOOO1.
THEIR CURRJ34T VALUES. AND SUBPROGRMIS WHERE THEY ARE SET -

cumnt
V d U e

1

6

subprognm-
variabie is sct

BLOCK DATA in
double-precision version

precision version
and XERRW in single-

BLOCK DATA in
double-precision vasion
and XERRW in single-
precision version

49

TABLE 3.8.-DESCRPTION OF VARIABLES LN COMMON BLOCK LSOOO1. THEIR
CURRENT VALUES. IF ANY, AND SUBPROGRAMS WHERE

THEY ARE SET OR COMPUTED.

Variable

3ONlT

:RATE

?L

ZLCO

HOLD

M A X

mco

3CMAX

EL0

H

"b

HMMb

H u

Description

Empirical factor. 0.5/(NQ + I)
used in convergence test (see

Estimated convergence rate of

Method coefficients in normal

eq. (2.99))

iteration

form [QI} (see eq. (2.68)), for
current method order

Method coefficients in normal
form for current method of
orders 1 to MAXORD

Step s i x used on last success-
ful step or attempted on last
unsuccessful step

Maximum factor by which step
size will be increased when
step size change is next
considered

Test coefficients for current
method of orders 1 to
MAXORD, used for testing
convergence and local
accuracy and selecting new
step size and method order

allowed in HxELO before
Jacobian matrix is updated

eq. (2.68)) for current method
and current order

Step size either being used on
this step or to be attempted
on next step

Minimum absolute value of step
size to be used on any step

Inverse of maximum absolute
value of step size to be used
on any step

Step size used on last success-
ful step

Maximum relative change

Method coefficient Po (sw

Current value,
if any

vmaliY IO; 104 for very
first step size increasc
for problem if no dif-
ficulty encountered. 2
after a failed converg-
ence or local error test

0.3

0.0

0.0

Subprograms where
variable is set or

computed

STODE

STODE

STODE

CFODE

STODE

STODE

CFODE

B O D E

STODE

LSODE
STODE

B O D E

STODE

"Note that some variables appear in the table before they are defined.
h f a u l t value for this variable can be changed by the user, as described in table 4.6.

50

Variable

RC

TN

UROUND

ILLIN

m

LYH

LEWT

LACOR

LSAVF

LWM

TABLE 3.8.--Continued.

Description

Relative change in HxELO
since last updatc of Jacobian
matrix

Value of indcpcndcnt variable
to which integrator cithw has
successfully advanced solution
or will do so aftcr next step

Unit roundoff of computer

Number of consecutive times
LSODE has bccn called with
illegal input for cumnt
pcoblcm

Integer flag (= 0 or 1) that
dmotes if initialization of
LSODE has bccn paformcd
(IN lT=1)ornOt (IN IT=O)

"X(MAx0RD + 1)

vector EWT of length N

(of length N) containing local
e m on last succcssN step

Base lddrca fa Nordsicck
history m y YH of length

Base ddrcss for e m weight

Base address for array ACOR

Base address for an array
S A W (of length N). used for
tempwary skn'agc

Base lddress f a array WM (of
length LENWMC). required
for linear algebra associated
with Jacobian md itaztion
d C e S

c u m t value,
if any

21

LWM + L E W

LEWT + 2N

LEWT+N

LYH +
"x(MAx0RD + 1)

%e. length
table 3.9.

of the array WM depends on the iteration technique i

subprograns whue
variable is set or

ComPuM

STODE

STODE

DlMACH in
doubk-precision
version md
RlMACH in
single-peckion
version

BLOCK DATA
(doubk-precision
version) md
LSODE (single-
precision version).
Updated in LSODE
in both versions.

LSODE

Initialized in

LSODE

LSODE

LSODE

LSODE

LSODE

~~

I is given in

51

Variable

LIWM

MXSTEPb

MXHNILb

" N I L

NTREP

NSLAST

NYH

IALTH

TABLE 3.8.4ontinued.

Description

Base address for integer work

Maximum number of steps
- Y M

allowed on any one call to
LSODE

warning message that step
s i x is so small that TN +
H = TN for next step is
p n n d

Maximum number of timcs that

Number of times that this dif-
ficulty with small step size
has been encountered so far
for problem

Number of consecutive times an
initialization or "first" call
(see table 4.3) has been made
to LSODE with same initial
and final values for integra-
tion interval

Number of steps used for
problem prior to current call
to LSODE; used to check that
the limit of MXSTEP steps is
not exceeded

Maximum number of ODE's to
be solved for cumnt problem
(This number is qua l to the
number of ODE's specified on
first call to LSODE.)

size and method order
changes, with following
valus and meanings:
0 Sclcct optimal step size and

method order.
1 If NQU < W O R D , save

v e d ~ 4 (sec cqs. (2.76) and
(2.1 11)) so that an orda
incnasc can be considered
on the next step.

>I Neither of these two oper-
ations is to be performed.

Integer counter, related to step

Cumnt value,
if my

1

500

10

befault value for this variable can be changed by the user, as described in

52

subprograms when
variable is set or

computed

LSODE

LSODE

LSODE

LSODE

[nitialized in
BLOCK DATA
(double-precision
version) and
LSODE (single-
precision
version). Updated
in LSODE in
both versions.

LSODE

LSODE

STODE

ble 4.6.

TABLE 3.8.4ntinued.

Variable Description

Integer flag, related to Jacobian
matrix update, with following
values and meanings:
0 Jacobian matrix is cithcs

not needed a does not have
c O b e U p d . t e s

updated before comdor
>o J 4 ; n matrix must be

ilcration.
Maximum number of columns

of Nordsicck history m y
Integration method specif& on
prtvious u l l to LSODE

Number of elemnts of
Nonfsicck history array that
arc changed by predictor

Step numba when Jacobian
matrix was last updated

An intega flag. related to iter-
ation amvergenct. with fol-
lowing values and meanings:
0 Solution converged.
1 Convergence test failed ud

Jacobian rmhix is not
arrrmt.

2 Convergence test failed and
Jacobian matrix is either
current or not needed.

Integer flag. related to singulr-
ity of iteration matrix, with
following values and
meanings:
0 llefation m - x w s suc-

assfully LUdecompoMd
@mER = 1. 2.4, or 5) or
invacad (MITER = 3) (set
table 3.2)

1 llentionmntrixwsfound
to be singular.

Integer flag, related to singular-
ity of interation nubix modi-
fied to BCUnmt for new
(HxELo)forMrrER=3(set
table 3.2). IERSL has fol-
lowing vdues and munings:
0 M o d i d iteration matrix
was successfully inverted
and corrections computed.

1 New matrix was found to be
singular.

Cumnt value,
if any

W O R D + 1

NQxNYH

STODE

STODE

STODE

STODE

STODE

STODE

PREPJ

SOLSY

53

TABLE 3.8.--Continued.

Variable

[CUR

ISTART

(FLAG

W?TH

MITER

W O R D b

UAXCOR

MSBP

Description

Integer flag, related to state of
Jacobian matrix, with fol-
lowing values and meanings:
0 Jacobian matrix is not cur-

rent and may need to be
updated later.

1 Matrix is cumnt.
Integer flag, used to communi-

cate state of calculation to
STODE. with following
values and meanings:
0 This is the first step for the

I Continue n m a l calculation
problem.

of problem. (This is the value
returned by STODE to
facilitate continuation.)

-1 Take the next step with MW
values for H, MAXORD. N,
hiETH (see table 3.1).
MITER (see table 3.2).
and/or matrix parameters.

A completion code from
STODE with following values
and meanings:
0 step was sucassful.

-1 Rtquestcd local accuracy in
solution could not be
achieved.

-2 Repeated convergence test
failures occurred.

Number of columns of

Integration method to be used

Iteration technique to be used

Maximum method order to be

Nordsicxk array

on next step

on next step

used for problem

Maximum number of corrector
iterations to be attempted on
any one step

Maximum number of steps for
which same Jacobian matrix is
used

Current value,
if any

-I-__

NQ+ I

12 for Adams-Moulton
method and 5 for
backward differcnt-
iation formula method

3

a

hbprograms where
variable IS set or

computed

PREPJ
STODE

LSODE
STODE

STODE

STODE

LSODE

LSODE

LSODE

LSODE

B O D E

Default value for this variable can be changed by the user. as described in table 4.6.

54

Variable

MXNCF

N

NQ

NST

NFE

N E

NQU

Dcmiption Cumnt value,
if any

Maximum number of corndoc
convergcllce fiiluret allowed
on any OM step

Number of ODE'S to be SOlvtd
on next step

Method order eithcr being tried
on this step or to be attempted
on next step

steps used so far for problem
Total number of inlegdon

Total number of daivrive
evaluations requid so far for
problem

Total number of Jocobirn
matrix evaluations (and
iteration matrix LU-
decompositions or inversions)

Method ordcr uscd on last suc-
required so far for probIern

cessful step.

TABLE 3.9.-LENGTH LENWM
OF ARRAY WM IN TABLE 3.8
FOR lTERATION "NIQW

INCLUDED IN CODE

MITER. I LENwMb I

4.5 (2ML+MU+I)N+2

iubprogrpns whac
variable is set or

COmpUtCd

LSODE

-
STODE

LSODE
STODE

LSODE
STODE

LSODE
PREPJ

STODE

'See table 3.2 for description of
MITER.

% is the number of ODE'S and ML
md MU a defined in table 33.

55

3. Description of Code

The main routine, LSODE, controls the integration and serves as an interface
between the calling subprogram and the rest of the package. A flowchart of this
subroutine is given in figure 3.2. In this figure ITASK and ISTATE are user-
specified integers that specify, respectively, the task to be performed and the state
of the calculation, that is, if the call to LSODE is the first one for the problem or a
continuation; if the latter, ISTATE further indicates if the continuation is a normal
one or if the user has changed one or more parameters since the last call to
LSODE (see chapter 4 for details). On return from LSODE the value of ISTATE
indicates if the integration was performed successfully, and if not, the reason for
failure. The integer JSTART is an internally defined variable used for
communicating the state of the calculation with the routine STODE. The variables
T (= C), H, and X are, respectively, the independent variable, the step size to be
attempted on the next step, and the numerical solution vector. TOUT is the 6
value at which the solution is next required. Finally, TCRIT is the 5 value that
the integrator must not overshoot. This option is useful if a singularity exists at or
beyond TCRIT and is discussed further in chapter 4.

The subroutine STODE advances the numerical solution to the ODE’S by a
single integration step [5,-1,E,,]. It also computes the method order and step size
to be attempted on the next step. The efficiency of the integration procedure is
increased by saving the solution history, which is required by the multistep
methods used in the code, in the form suggested by Nordsieck (ref. 33). The
Nx(q + 1) Nordsieck history matrix z,-l at cn-l contains the numerical solution
L - 1 and the q scaled derivatives hiX$?~/j! 0’ = 1, ...,q), where h, (= 5, - E,,-1) and
q are, respectively, the current step size and method order and 9) = djxJd5J.

The flowchart of STODE is presented in figure 3.3. In this figure NCF is the
number of corrector convergence failures on the current step, KFLAG is an
internally defined integer used for communication with LSODE, NQ (= q) is the
method order to be attempted on the current step, and the integer counter IALTH
indicates how many more steps are to be taken with the current step size and
method order. The (NQ + 1)-dimensional vector contains the method coefficients
and depends on both the integration method and the method order; 40 is the zeroth
component of 1 (see eq. (2.68)). The matrix ziol is the predicted Nordsieck
history matrix at E,,, and the NxN iteration matrix P is given by equation (2.25).
The variable R is the ratio of the step size to be attempted next to its current
value, M A X is the maximum R allowed when a step size change is next
considered, and HMIN and HMAX are user-supplied minimum and maximum
absolute values for the step size to be tried on any step. The ratios RHDN,
RHSM, and RHUP are factors by which the step size can be increased if the new
method order is NQ - 1, NQ (the current value), and NQ + 1, respectively.
Finally, NQMAX is the maximum method order that may be attempted on any
step, and the vector E, (=h,%, - h y lo1) is proportional to the local truncation
error vector at 5, (see eqs. (2.87) an375.89)).

56

3.4 Special Features

3.4.1 Initial Step Size Calculation

An important feature of LSODE is that it will compute the step size ho to be
attempted on the first step if the user does not provide a value for it. The
calculation procedure attempts to produce an ho such that the numerical solution
X1 generated at the first internal mesh p i n t 51 will satisfy the local error test.
Now with either solution technique the code starts the integration with a first-
order method. Hence the asymptotic local truncation error d j , ~ in the ith solution
component at 51 will be equal to (1/2)h12jii(51) for both the Ah4 and BDF methods
of order 1. Here hl is the step size successfully used on the first step, andy'i(s1) is
the second derivative of the ith component of y at 51. To pass the local error test,
equation (2.91), the weighted local error vector, that is, {~,,J/EWTL~}, must
satisfy the inequality

where EWTil is the ith component of the error weight vector for the first step (see
eq. (2.90)):

EWT,,~ = R T O L , I ~ , ~ I + ATOL,. (3.3)

In this equation RTOLi and ATOLi are, respectively, the user-supplied local
relative and absolute error tolerances for the ith solution component, YLO is the ith
solution component at 50, and the vertical bars 1.1 denote absolute value.

The test given by equation (3.2) cannot be applied at the start of the step [b, 511
because y(E,l) is not known. We therefore modify this test by using y(50) as
follows: -We first define a weighted principal error function at order l,-$, - with
element $i given by

$. =--I-, 1 Y.(50)
' 2 y. (3.4)

where

y. = Em,, /TOL, (3.5)

57

Start

Check legality of ISTATE
and ITASK values

t

Compute index of component
with largest magnitude in
weighted local error; set T,
all optional output, and
ISTATE c 0 to indicate failure
to calling program

-
Yes (Not first call;
normal continuation)

(= 1 : First call for problem
= 3: Not first call; user has changed

one or more parameters)

Process and check legality of all input:
mandatory, optional, and modified parameters

Set default values for all optional parameters
not set by user

t
Set real work array pointers and check adequacy of
lengths specified by user for real and integer work arrays

Return
Call STODE to

t advance solution

Form initial history array - t A
Set flag JSTART =
-1 to indicate to
STODE that some
parameters have
been changed by
user; make
necessary changes
to real work array

I Y If not specified by user, compute step
size to be attempted on first step

Compute unit roundoff of computer; set JSTART = 0 to
indicate to STODE this is first call for problem; initialize
optional output parameters; call F for derivatives of initial
conditions and EWSET for error weight vector

to calling

(ITASK =
1,3, or 4)

Call EWSET
for error weight
vector

Yes

If necessary, adjust step
size H to hit TCRlT and

indicate to STODE that
H has been changed

Set JSTART = -2 to

+ Yes

within

I Yes

1 Yes I
IS T =

within

No Y \ T-TOUT /
(ITASK = 3) I t

VI \o Figure 3B.-Flowchart of subroutine LSODE.

= 0 (First call

I
for problem)

I Set new H = I max {HMIN, min (H x R,
4

If NQ increased, compute
scaled (NQ + 1) th-derivative
of and augment r,! by
column containing this
derivative vector

RMAX = 1 d, IALTH = 2, and
flag to indicate that Jacobian
matrix J must be updated.
Call CFODE to compute
method coefficients @for
current integration method
of all orders; set C for current

t = -1 : Some parameters
have been chang- initialize all variables; set I I Set new NQ corresaond- I

I I I RHDN, RHSM, and RHUP I ing to maximum ratio ed by user
= -2: Step size H has

1 beenchanged I I

b!
> 0 (Not first
call; normal
continuation)

A Has He,-,

SODE)~ c
If JSTART = -1 : set flag to
force J update and IALTH =
2, if it is equal to 1. Also, as
needed, call CFODE to
compute {i} for current
integration method of all
orders; adjust NQ, and set 1
for current NQ. For both
JSTART, if necessary, adjust
H and history array z,-1

(Return?

Set IALTH = NQ + 1
and RMAX= 10

Compute estimated
local error in L; save H,
so caller can change it
on next step; set
JSTART = 1

I Set IALTH = 3 1
Compute step size ratios I RHDN. RHSM. and RHUPI

IS)-I if NQ = 1, set RHDN = 0; if’
R 2 1.1 NQ = NQMAX. set RHUP= v 0; set R = m a i (RHDN, I RHSM. RHUP)

changed bymore
Set new H = max (R x H, HMIN),
rescale q-1 , and set IALTH = NQ + 1 f& J update 30 percent or have s i n c e 3 20 steps

been taken with
same J

+
Set R = 0.25 and flag to indicate J must be updated

t

J
decreased,

iteration matrix P, and either
computes or calls DGEFA or
DGBFA to LU-decompose P

At each iteration m, either compute, or
call SOLSY for, incremental corrector [ml test failures or any
error. Compute new solution estimate &
and corrector errordd

with H = HMlN

Save H to allow
caller to change it

RMAX = 2, and recover t
Set KFLAG = -1 to
indicate to LSODE - repeated local error -
test failures or any
with H = HMlN

RMAX = 2, and recover zn-l

via RHSM and RHDN; set R = min (R, 1);

Figure 3.3.4lowchart of subroutine STODE.

3. Description of Code

and the scalar tolerance quantity TOL, which is to be determined, is such that Wi is
a suitable weight for Yi, the ith component of 1. The step size and the local error
are then together required to satisfy the inequality

where 11-11 represents a suitable norm. We have used a different symbol for the
initial step size than in equation (3.2) to indicate that this quantity is not known
and must be computed. Because a first-order method will be used on this step, for
a sufficiently small step size the numerical approximation 21 at 51 will not be
significantly different from y(b), and use of the latter quantity is therefore
reasonable. The rationale for h o d u c i n g TOL will become apparent shortly.

The second derivative y(50) is not generally available, and so the following
empirical procedure is use3 to estimate it. We consider the dominant eigenvalue
(= A) of the ODE system and model this component with the simple scalar ODE

where I h I >> 1. For this problem, I$ = (1/2)y/W = (1/2)h2y/W. Now, if TOL is
chosen such that y/W is of order unity, I$ can be approximated by (y/W2
[= (Ay/W)2],which is known. For the scalar ODE this condition is obtained by
setting TOL = RTOL and ATOL = 0 (see eqs. (3.3) and (3.5)). The quantity y/W
may be regarded as the weighted principal error function for a “zeroth order”
method. We use this empirical rule to replace each @ j by (yJWj)2 so that equation
(3.6) can be written as

N

h i [(&,O/yr] 1 I TOL,

where 3,o [=A(&, Eo)] is the first derivative of the ith component at 50. Because
the weighted root-mean-square (rms) norm is used in the local error test, equa-
tion (3.2), for convenience, we use the following criterion for initial step size
control:

Equations (3.5) and (3.9) together show that ho (= 1 / m L) is a decreasing

62

3.4 Special Features
function of TOL. To produce a reliable estimate for h~ we therefore select a TOL
erring on the high side. A suitable value is given by

TOL = max(RTOLi). (3.10)
i

This expression cannot be used if all RTOLi = 0. In this case an appropriate value
for TOL is given by

/ \

ATOL,
TOL = maxi - for q,o f 0. (3.1 1)

In any case the value of TOL is constrained to be within reasonable bounds as
follows:

loou I TOL I (3.12)

where u is the unit roundoff of the computer or the machine epsilon (ref. 13). It is
the smallest positive number such that 1 + u > 1.

Equation (3.9) cannot be used to compute ho if either each fi,o is equal to zero
or the norm is very small. To produce a reasonable ho in such an event, we
include the independent variable 5 as the zeroth component yo of - y and modify
equation (3.9) as follows:

(3.13)

where we have used the fact that y o = 1. To be consistent with the other Wi,
which are of order Yio, the weight Wo should be of order 50; however, we use

(3.14)

to ensure that it is not equal to zero. In equation (3.14), &,utl is either the first (or
only) value of the independent variable at which the solution is required or, as
discussed in chapter 4, a value that gives both the direction of integration (i-e.,
increasing or decreasing 5) and an approximate scale of the problem. If the
quantity &,ut, 1 - 50 is not significantly different fiom zero, an error exit occurs.
Equation (3.13) gives a reasonable value for ho (= Wo m L) if fo = 0.

63

3. Description of Code

The calculation procedure used for ho is therefore given by

TOL
N 2

i=l
N

(3.15)

Several restrictions apply to the step size given by equation (3.15). It is not
allowed to be greater than the difference Icout,l - 501. Hence

In addition, if the user has supplied a value for h,,, the maximum step size to be
used on any step, ho is restricted to

ho t- min(ho,h,,). (3.17)

However, no comparison of ho is made with hmin. the user-supplied minimum
step size to be used on any step, so that ho is allowed to be less than hmin. Finally
the sign of ho is adjusted to reflect the direction of integration.

3.4.2 Switching Methods

Another useful feature of LSODE is that different integration methods and/or
different iteration techniques can be used in different subintervals of the problem.
This option is useful when the problem changes character and is stiff in some
regimes and nonstiff in others as, for example, in combustion chemistry. Indeed,
because stiff problems are usually characterized by a nonstiff initial “transient”
region, the ability to switch integration methods is a desirable feature of any ODE
package. During the course of solving a problem the method flag MF may be
changed both whenever and as many times as desired. As described in chapter 4
changing methods is quite straightforward.

3.4.3 Excessive Accuracy Specification Test

At each integration step Cn] LSODE checks that the user has not requested
too much accuracy for the precision of the machine. This condition is said to
occur if the criterion

?
di,n < uq,n (3.18)

is true for all N solution components. In equation (3.18), di,n is the estimated

64

3.4 Special Features

local truncation error in Yi,m the ith solution component at cn. Now the numerical
solution X at Z& is judged to be sufficiently accurate if the following inequality is
satisfied (see chapter 2):

(2.9 1)

The quantity EWTb is the ith component of the error weight vector, equa-
tion (2.90), for this step. Equations (3.18) and (2.91) together imply that if the
quantity TOLSF (tolerance scale factor) defined as

(3.19)

is greater than 1, the test for excessive accuracy requirement is passed. This test is
quite inexpensive, but it can be applied only after the solution at c n is produced. It
is, however, wasteful to generate a solution only to discover that excessive
accuracy has been required, either because TOLSF is greater than 1 or because
repeated convergence failures or error test failures occur. The computational cost
can be significant if any difliculty is encountered because of the corrective
actions-described later in this section-performed by the code. Even if the step
is successful, the solution is not meaningful because of roundoff errors.

To avoid these difficulties, the calculation procedure for TOLSF uses L-1,
which is known, so that the test can be applied at the start of each step, including
the first. Thus the code ascertains inexpensively if excessive accuracy has been
requested before attempting to advance the solution by the next integration step.
The value of TOLSF may be used to adjust the local error tolerances so that this
condition does not recur. For example, scaling up the {RTOLi} and {ATOLi}
values by a minimum factor of TOLSF should produce satisfactory values for the
local error tolerances if the same type of error control is to be performed (see
chapter 4 for details).

3.4.4 Calculation of Method Coefficients

The integration method coefficients and test constants used to check corrector
convergence and local accuracy, as well as to select method order and step size,
are computed in subroutine CFODE. The calculation procedure uses the generating
polynomials discussed by Hindmarsh (refs. 21 and 22) to increase portability of
the code. The coefficients corresponding to all method orders are computed and
stored both at the start of the problem and whenever the user changes the
integration method. This feature avoids the computational cost associated with
recomputing these quantities whenever the method order is changed.

65

3. Description of Code

3.4.5 Numerical Jacobians

If Newton-Raphson (NR) or Jacobi-Newton (JN) iteration is selected, the code
will generate elements of the Jacobian matrix by finite-difference approximations
if the user chooses not to provide an analytical Jacobian. For the iteration
procedures corresponding to MITER = 2 (full Jacobian matrix) and 5 ("banded"
Jacobian matrix, Le., a matrix with many zero entries and all nonzero elements
concentrated near the main diagonal), the element .Tu (= &/&?) at cn is estimated
by using the approximation

fi ({do: + 6 k j A Y j } >tn) -fi ({e:} 9 k n)

J.. z= , i = l , ..., N , (3.20)
B - AYj

where Y[$:n is the kth component of YLol, Fkj is the Kronecker symbol,

kJ = { O > 1, k = k # j j ,
(3.2 1)

and the increment A q in the jth solution component is selected as follows: The
standard choice for AYj is

(3.22)

This equation cannot be used if is either equal to zero or very small.
Therefore an alternative value, based on noise level, is deduced as follows: Now
the error in eachfi due to roundoff is of order ulfil. Hence in replacing afi//ayi by
the difference quotient, equation (3.20), the resulting element Ji/ has an error of
order uKl/rj, where for clarity in presentation we have replaced Ayi by 5. Finally
because the method coefficient 00 (= 40) is of order unity (see tables 2.1 and 2.2),
the error FPo in the element Po of the iteration matrix P, equation (2.25), is
approximately

If we introduce the N-dimensional column vector s, with element sj defined as

s - = l / r . , j =1 , ..., N, (3.24)
J J

the matrix FP containing the errors { FPu} is given by

66

3.4 Special Features

6P = IhI u I f l sT , (325)

where I f I is an N-dimensional column vector containing the absolute values of the
(i = 1, ...m and the superscript Tindicates transpose. A suitable increment 9 is

obtained by bounding la, as discussed next.
To be consistent with the corrector convergence test, equation (2.98), and the

local error test, equation (2.91), we use the weighted rms norm, which for an
arbitrary N-dimensional column vector ~1 is given by

If re introduce th

2 N

diagonal matrix D of order N, with element Dii given by

Dii = l/EWi, i = 1, ..., N, (327)

it is easily verified that

= llDZll,/J;;. (3.28)

where 11.11, is the Euclidean norm, defined for as

Now the norm of 6P is given by

where

because 6P is of rank 1. Hence

(3.30)

(3.3 1)

67

3. Description of Code

which can be rewritten as

(3.32)

To establish the maximum allowable error in P, we consider the linear system
PL = b, which is the form of the equation to be solved at each Newton iteration,
equation (2.24). To first order, the error 6~ in x due to the error 6P in P is given by
(e.g., ref. 13)

(3.33)

The norm P-' I is not known but is expected to be of order unity because P + I,
the identity matrix of order N , when h + 0 and P - -hPoJ when h -+ 00 (see
eq. (2.25)). Therefore, a reasonable strategy is to bound I 6P I alone by selecting a
suitably small value for the relative error that can be tolerated in the Newton
correction vector. By using a value of 0.1 percent for this error, we obtain from
equations (3.32) and (3.33)

(3.34)

For additional safety ro is reset to 1 if it is equal to zero. Finally the increment A 5
in thejth variable used to estimate the { J g } is given by

68

3.4 Special Features

(3.35) A$ = max JII q, Io EWT~,,). (I I
For a full Jacobian matrix the above procedure will require (N + 1) derivative

evaluations and can therefore become much more expensive than the use of an
analytical Jacobian, especially for large N. Now fao1, is required by the
corrector (see eq. (2.36)), irrespective of the iteration technique. Hence the use of
MITER = 2 requires the evaluation of only N additional derivatives.

In generating the finitedifference banded Jacobian matrix (MITER = 5) the
code exploits the bandedness of the matrix for efficiency. The number of additional
derivative evaluations required to form the Jacobian matrix is only ML + MU + 1,
where ML and MU are, respectively, the lower and upper half-bandwidths of the
Jacobian matrix.

If JN iteration with MITER = 3 is used, the N diagonal elements Jii (i = 1, ...m
are estimated by using the approximation

, i = 1 ,..., N, (3.36) J.. p
I 1 A$

which requires only one additional derivative evaluation. The increment AYi is
selected as follows: Now equation (2.17) shows that if functional iteration were
used, the correction ~ 1 1 - 1$01 that would be obtained on the first iteration is
equal to the quantity PO - g a o l) , where the vector function - g is given by equa-
tion (2.16). The increment vector AX is taken to be 10 percent of this correction:

A q = 0.1 pogi(xF1), i = 1, ..., N. (3.37)

Hence the diagonal matrix approximation, equation (3.36), resembles a directional
derivative off taken in the same direction as the correction vector above. Also,
this approximation gives the correct Jacobian if it is a

the magnitude of AYiis less than 0.lupo EWTi, that is,
set equal to zero.

3.4.6 Solution of Linear System of Equations

If NR iteration is used for the problem, a linear system of the form PL = h must
be solved for the correction vector 5 at each iteration (see eq. (2.24)). The linear
algebra necessary to solve this equation is performed by the LU method (e.g.,

69

3. Description of Code

refs. 5 and 36), rather than by explicitly inverting the iteration matrix, which will
require prohibitive amounts of computer time (ref. 13). In the LU method the
iteration matrix is factored into the product of two triangular matrices L and U.
Solving equation (2.24) then requires the fairly simple solution of two triangular
linear systems in succession.

LSODE also includes special procedures for the LU-decomposition of the
iteration matrix and the solution of equation (2.24) when the matrix is known to
be banded. Compared to a full matrix, it is significantly less expensive to form a
banded matrix, perform its LU-decomposition, and solve the linear system of
equations (refs. 5,25,26, and 36). An important advantage of LU-decomposing a
banded matrix over inverting it is that, besides being faster, the triangular factors
L and U lie within nearly the same bands as the original matrix, whereas the
inverse is a full matrix (ref. 36). This feature makes the computation of the
correction vector significantly faster with the LU method than by premultiplying
the right-hand side of equation (2.24) with the inverse of the matrix.

If MITER = 3 is used for the problem, the resulting iteration matrix is diagonal
(see eq. (3.36)). Its inverse can therefore be obtained trivially and is used to
compute the corrections.

3.4.7 Jacobian Matrix Update

The difficulty with Newton-Raphson iteration is the computational cost
associated with forming the Jacobian matrix and the linear algebra required to
solve for the correction vector at each iteration. However, as discussed in chap-
ter 2, the iteration matrix need not be very accurate. This fact is exploited to
reduce the computational work associated with linear algebra by not updating P at
every iteration. For additional savings it is updated only when the iteration does
not converge. Hence the iteration matrix is only accurate enough for the solution
to converge, and the same matrix may be used over several steps. It is also
updated if three or more error test failures occur on any step. Now P may be
altered if the coefficient hPo is changed (see eq. (2.25)) because a new step size
and/or method order is selected. In order to minimize convergence failures
caused by an inaccurate P, the code updates P and performs its LU-decomposition
(or inversion if MITER = 3) if hPo has changed by more than 30 percent since the
last update of P. In addition, for MITER = 3, because P-' can be generated
inexpensively, it is first modified to account for any change in hPo since its last
update, before the corrections are computed. The reevaluation and LU-
decomposition or inversion are also done whenever the user changes any input
parameter required by the code. Finally the same P is used for a maximum
number of 20 steps, after which it is reevaluated and LU-decomposed or inverted.

3.4.8 Corrector Iteration Convergence and Corrective Actions

Irrespective of the solution method and the corrector iteration technique, the
maximum number of corrector iterations attempted on any step is set equal to 3,

70

3.4 Special Features

based on experience that a larger number increases the computational cost without
a corresponding increase in the probability of successful convergence (refs. 19,
21,22, and 25). In addition to performing the convergence test, equation (2.99),
at each iteration, STODE examines the value of the convergence rate c,, equa-
tion (2.102). If c, is greater than l, the iteration is clearly not converging.
STODE exploits this fact by abandoning the iteration if c, is greater than 2 after
the second iteration.

If convergence is not obtained because either (1) equation (2.99) is not satisfied
after three iterations or (2) c, > 2 after the second iteration, the following
corrective actions are taken: For NR and JN iterations, if P is not current, it is
updated at y =&.'I and LU-decomposed or inverted, and the step is retried with
the same st.?, size. However, if either P is current or functional iteration is used, a
counter of convergence failures on the current step is increased by 1, the step size
is reduced by a factor of 4, and the solution is attempted with the new step size.
The same corrective actions are taken in the event of a singular iteration matrix.

This procedure is repeated until either convergence is obtained or the integration
is abandoned because either (1) 10 convergence failures have occurred or (2) the
step size has been reduced below a user-supplied minimum value h-. In the
event of an error exit the index of the component with largest magnitude in the
weighted local error vector is returned to the subprogram calling LSODE.

3.4.9 Local Truncation Error Test and Corrective Actions

After successful convergence STODE performs the local truncation error test,
equation (2.96). If the error test fails, the step size is reduced and/or the method
order is reduced by 1 by using the procedures outlined in section 3.4.10, and the
step is retried. After two consecutive failures the step size is reduced by at least a
factor of 5, and the step is retried with either the same or a reduced order. After
three or more failures it is assumed that the derivatives that have accumulated in
the Nordsieck history matrix have errors of the wrong order. Therefore the first
derivative is recomputed and the method order is set equal to 1 if it is greater than
1. Then the step size is reduced by a factor of 10, the iteration matrix is formed
and either LU-decomposed or inverted, and the step is retried with a new z,-i that
is constructed from L-1 and y,1= f&-1).

This procedure is repeated until either the error test is passed or an error exit is
taken because either (1) 10 error test failures have occurred or (2) the step size has
been reduced below h ~ , , . In the event of an error exit LSODE returns the index of
the component with the largest magnitude in the weighted local error vector to the
calling subprogram.

If the accuracy test is passed, the step is accepted as successful, and the
Nordsieck history matrix z, and the estimated local truncation error vector & at &
are computed by using equations (2.76) and (2.89), respectively. Irrespective of
whether the step was successful or not, STODE saves the value of the most recent
step size attempted on the step so that the user may, if desired, change it.

71

r----- -- ----
3.4.10 Step Size and Method Order Selection

In addition to advancing the solution STODE periodically computes the method
order and step size that together maximize efficiency while maintaining prescribed
accuracy. As discussed in chapter 2, this result is accomplished by selecting the
method order that maximizes step size. To simplify the algorithm, the code
considers only the three method orders 4 - 1, 4, and 4 + 1, where 4 is the current
method order. For each method order the step size that will satisfy exactly the
local error bound is computed by assuming that the highest derivative remains
constant. The resulting step size ratios (defined as the ratio of the step size to be
attempted on the next step to the current value h,) are given by equations (2.107),
(2.103), and (2.1 12), respectively, for method orders 4 - 1, q, and 4 + 1. These
equations are, however, modified by using certain safety factors (1) to produce a
smaller step size than the value that satisfies the error bound exactly, because the
error estimates are not exact and the highest derivative is not usually constant, and
(2) to bias the order-changing decision in favor of not changing the order at all,
because any change in order requires additional work, and then in favor of
decreasing the order, because an order reduction results in less work per subsequent
step than an order increase. The formulas used in STODE to calculate the step

I
(3.38) -

rdown - r 1 1’

I L J

L I
1

1’ r = I . up r 1

(3.39)

(3.40)

In equations (3.38) to (3.40) the factors 1.2, 1.3, 1.4, and are strictly
empirical. The subscripts “down,” “same,” and “up” indicate, respectively, that
the method order is to be reduced by 1, left unchanged, and increased by 1.

To prevent an order increase either after a failed step or when 4 = qmX, the

3.4 Special Features
maximum order allowed for the solution method, rup is set equal to zero in such
cases. Similarly, if q = 1, rdom is set equal to zero to avoid an order reduction.

The maximum step size ratio r = max (rdom, rsm, rup) and the corresponding
method order are selected to be attempted on the next step if r 2 1.1 after a
successful step. Changes in both step size and method order are rejected if the
step size increase is less than 10 percent because it is not considered large enough
to justify the computational cost required by either change (refs. 10 and 22). After
a failed step the method order is decreased if ?-do, > rsm; however, r = max
(rdom, r-) is reset to 1 if it is greater than 1. Several additional tests, given
next, are performed on r, if r 2 1.1 after a successful step, but irrespective of the
value of r after a failed step, before the step size h' (= rh,) to be attempted next is
selected.

If the maximum step size hmax to be attempted on any step has been specified
by the user, r is restricted to

r t min(r , ~) . (3.41)

Similarly if the user has specified a minimum step size h- that may be attempted
on any step, r is restricted to

r t max (r,- h c) .

Finally r must satisfy the inequality

(3.42)

(3.43)

where the variable rmax is normally set equal to 10. However, for the very first
step size increase for the problem, if no convergence or error test failure has
occurred, rmax is set equal to lo4 to compensate for the small step size attempted
on the first step. For the first step size increase following either a corrector
convergence failure or a truncation error test failure, rmax is set equal to 2 to
inhibit a recurrence of the failure.

To avoid numerical instability caused by frequent changes in the step size,
method order and step size changes are attempted only after S successful steps
with the same method order and step size, where S is normally set equal to 4 + 1.
However, if an unsuccessful step occurs, this rule is disregarded and the step size
andlor the method order may be reduced. Following a failed error test or a failed
convergence test with either functional iteration or NR and JN iterations if P is
current, S is set equal to 4 + 1. If three or more error test failures occur on any one

73

3. Description of Code

step, S is set equal to 5 even though the method order is reduced to 1. Finally
following a step for which step size and method order changes are rejected
because r < 1.1, S is set equal to 3.

After every S - 1 successful steps STODE saves the vector e, if q < qma, in
order to estimate Ve, which is required to compute rup (see eqs. (2.109) to
(2.112)). To minimize storage requirements, en is saved as the qmaxth, that is, the
last, column of 2,.

3.5 Error Messages

The code contains many error messages-too numerous to list here. Every
input parameter is tested for legality and consistency with the other input variables.
If an illegal input parameter is discovered, a detailed message is printed. Each
error message is self-explanatory and complete. It not only describes the mistake
but in some instances tells the user how to fix the problem. Any difficulty
encountered during execution will result in an error exit. A message giving the
reason for termination will also be printed. If the computation stops prematurely,
the user should look for the error message near the end of the output file
corresponding to the logical unit number LUNIT (see chapter 4).

Chapter 4
Description of Code Usage

To use the LSODE package, the following subprograms must be provided: (1) a
routine that manages the calls to subroutine LSODE, (2) a routine that computes
the derivatives c f i = dyi/&} for given vdues of the independent variable 6 and the
solution vector y , and (3) if an analytical Jacobian matrix J (= af/ay) is required
by the corrector%eration technique selected by the user, a routine that computes
the elements of this matrix. In addition, some modifications, discussed below, to
the LSODE source itself may be necessary.

4.1 Code Installation

4.1.1 BLOCK DATA Variables

The user may wish to reset the values for the integer variables MESFLG (cur-
rently l) and LUNIT (currently 6), which are both set either in the BLOCK DATA
module (double-precision version) or in subroutine XERRWV (single-precision
version). The variable MESFLG controls the printing of error messages from the
code, and LUNIT is the logical unit number for such output (see table 3.7).
Setting MESFLG = 0 will switch off all output from the code and therefore is not
recommended.

The single-precision version of the code loads initial values for the common
block LSOOOl variables ILLIN and NTREP (see table 3.8) through a DATA state-
ment in subroutine LSODE. The same procedure is used in subroutine XERRWV
for the common block EHOOOl variables MESFLG and LUNIT (see table 3.7).
However, on some computer systems initial values for common block elements
cannot be defined by means of DATA statements outside a BLOCK DATA
subprogram. In this case the user must provide a separate BLOCK DATA
subprogram, to which the two DATA statements from subroutines LSODE and
XERRWV must be moved. The BLOCK DATA subprogram must also contain
the two common blocks EHOOOl and LSOOOl (see table 3.6).

75

4. Description of Code Usage

4.1.2 Modifying Subroutine XERRWV

The subroutine XEFGXWV, which prints error messages from the code, is
machine and language dependent. Therefore the data type declaration for the
argument MSG, which is a Hollerith literal or integer array containing the message
to be printed, may have to be changed. The number of Hollerith characters stored
per word is assumed to be 4, and the value of NMES, which is the length of, that
is, number of characters in, MSG is assumed to be a multiple of 4, and at most 60.
However, the routine describes the necessary modifications for several machine
environments. In particular, the user must change a DATA statement and the
format of statement number 10. The routine assumes that all errors are either (1)
recoverable, in which case control returns to the calling subprogram, or (2) fatal,
in which case the run IS aborted by passing control to the statement STOP, which
may be machine dependent. If a different run-abort command is needed, the line
following statement number 100, which is located near the end of the routine,
must be changed.

4.2 Call Sequence

The call sequence to subroutine LSODE is as follows:

CALL LSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, ISTATE,
IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)

All arguments in the call sequence are used on input, but only Y, T, ISTATE,
RWORK, and IWORK are used on output. Also, Y and T are set only on the first
call to LSODE; the other arguments may, however, have to be reset on subsequent
calls. The arguments to LSODE are defined as follows:

F The name of the user-supplied subroutine that computes the derivatives
of the dependent variables with respect to the independent variable.
This name must be declared EXTERNAL in the subprogram calling
LSODE. The requirements of subroutine F are described in section
4.3.

NEQ The number of first-order ordinary differential equations (ODE’s) to
be solved. (The code allows the user to decrease the value of NEQ
during the course of solving the problem. This option is useful if
some variables can be discarded as the solution evolves as, for example,
in chemical kinetics problems for which the reaction mechanism is
reduced dynamically.) As discussed later, NEQ can be specified as an
array. In this case NEQ(1) must give the number of ODE’s to be
solved, and the subprogram calling LSODE must contain a dimension
statement for NEQ.

76

Y

T

TOUT

ITOL

4.2 Call Sequence

A vector of length NEQ (or more) containing the dependent variables.
The subprogram calling LSODE must include a dimension statement
for Y if it contains more than one component. On the first call to
LSODE this vector must be set equal to the vector of initial values of
the dependent variables. Upon every return from LSODE, Y is the
solution vector either at the desired value (TOUT or TCRIT, see
below) of the independent variable or that generated at the end of the
previous integration step. In case of an error exit Y contains the
solution at the last step successfully completed by the integrator.

The independent variable. On the first call to LSODE, T must give
the initial value of this variable. On every rehun fi-om LSODE, T is
either the independent variable value (TOUT or TCRIT, see below) at
which the solution is desired or the independent variable value to
which the numerical solution was advanced on the previous integration
step. If an error exit occurs, T gives the value of the farthest point (in
the direction of integration) reached by the integrator.

The next value of the independent variable at which the solution is
required, if ITASK = 1, 3, or 4 (see table 4.1). For ITASK = 2 or 5,
LSODE uses TOUT on the first call to determine the direction of
integration and, if necessary, to compute the step size to be attempted
on the first step; on subsequent calls TOUT is ignored. LSODE
permits integration in either direction of the independent variable.

A flag that indicates the type of local error control to be performed.
The legal values that can be assigned for ITOL and their meanings are

TABLE Il.-VALUES OF ITASK USED IN MODE
ANDTHEIRMEANINGS

ITASK DeScriptiOn

+ I

2

'3

ab4

b5

Compute output valucs of I(<) ?t 5 = 5, by overshooting and

Advance the solution to the ODE'S by one step and =turn to

Stop at the first internal mesh point at or beyond 5 = f& and

c~mpule output values ofI(s> at 5 = 5, but without over-

Advance the solution to the ODE's by m step without passing

interpolation.

calling subprogram.

rcturn to calling subprogram.

shooting 5 = Lr
5 = $,, and return to calling subprogram.

.User must supply value for Lilt (= TOUT).
bser must supply value for Lt (= TCRIT). 'Ihis option is useful if the

probIem has a singularity at or beyond 5 =

77

4. Description of Code Usage

TABLE 42-VALuES OF ITOL USED
IN LSODE AND THEIR MEANINGS

Description

Scalar RTOL and scalar ATOL

Anay RTOL and scalar ATOL

given in table 4.2. The variables RTOL and ATOL are described next.

RTOL

ATOL

ITASK

ISTATE

78

The local relative error tolerance parameter for the solution. This param-
eter can be specified either as a scalar, so that the same tolerance is used
for all dependent variables, or as any array of length NEQ, so that
different tolerances are used for different variables. In the latter case the
subprogram calling LSODE must contain a dimension statement for
RTOL.

The local absolute error tolerance parameter for the solution. This
parameter can also be specified either as a scalar, so that the same
tolerance is used for all dependent variables, or as an array of length
NEQ, so that different tolerances are used for different variables. In
the latter case the subprogram calling LSODE must contain a dimension
statement for ATOL.

An index that specifies the task to be performed. This flag controls
when LSODE stops the integration and returns the solution to the
calling subprogram. The legal values for ITASK and their meanings
are given in table 4.1. If ITASK = 4 or 5, the input variable TCRIT (=
independent variable value that the integrator must not overshoot, see
table 4.1) must be passed to LSODE as the first element of the array
RWORK (defined below).

An index that specifies the state of the calculation, that is, if the call to
LSODE is the first one for the problem or if it is a continuation. The
legal values for ISTATE that can be used on input and their meanings
are given in table 4.3. The option ISTATE = 3 allows changes in the
input parameters NEQ, ITOL, RTOL, ATOL, IOPT, MF, ML, and MU
and any optional input parameter, except HO, discussed in the
descriptions of RWORK and IWORK. The integer variables IOF'T,
MF, ML, and MU are defined below. The parameters ITOL, RTOL,
and ATOL may also be changed with ISTATE = 2, but LSODE does
not then check the legality of the new values. On return from LSODE,
ISTATE has the values and meanings given in table 4.4.

TABLE 4.3.-VALUES OF ISTATE THAT CAN BE USED ON
INPUT TO LSODE AND THEIR MEANINGS

ISTATE Description
I

1
2

3

This is the first call for the problem.
This is not the first call for thc problem, and the calculation is to

be continued d l y with no change in any input parameters
except possibly and ITASK?

This is not the first call for the problem, and the calculation is to
be continued normally, but with a change in input parameters
orher than E,,,,,, and f lAsIc.

'Set table 4.1 for description of ITASK.

TABLE 4.4.-VALUES OF ISTATE RETURNED BY LSODE

ISTATE

1

2
-1

-2

-3

-4

-5

-6

ANDTHEIRMEANINGS

Meaning

Nothing was done because TOUT = T on fust call to LSODE.
(However, an internal counter was set to detect and prtvent
repeated calls of this type.)

The integration was performed succcssfully.
Excessive amount of work was done on this call (Le., number of

steps excttdcd MXSl" on this call), but the integration was
successful as far as thc value returned in T.

Too much accucacy was requested for thc computer being used. but
the integration was successful as far as the value returned in T.
(If this error is detected on the first call to LSODE (Le., before
any integration is done), an illegal input e m @!STATE = -3, see
below) occufs instead.)

Illegal input was specified. The e m message is detailed and self-

Repeated error test failures occumd on one step, but the integration
was successful as far as the value returned in T.

Repeated convergence test failures occumd on one step, but the
integration was successful as far as the value retumcd in T.

Some component, mi.. of the error weight vector &
vanished, so that the local e m test cannot be applied. but the
integration was successful as far as thc value returned in T. (This
condition arises when pure relative error control (is., ATOL,
= ob) was specified for a variable whose magnitude is now zero.)

explanatory.

*Sa table 4.6.
4ke chapter 2.

4. Description of Code Usage

IOFT An integer flag that specifies if any optional input is being used on
this call. The legal values for IOPT together with their meanings are
given in table 4.5. The optional input parameters that may be set by
the user are given in table 4.6. For each such input variable this table
lists its location in the call sequence, its meaning, and its default
value. The quantities RWORK and WORK are work arrays described
below.

TABLE 4.5.-VALUFS OF IOPT THAT CAN BE USED ON
INPUT TO LSODE AND THEIR hEANWGS

The user has not set a value for any optional input parameter.'
(Default values will be used for all thcsc parameters.)

Values have been specified for one or more optional input

table 4.6 for a list of these parameters.

TABLE 4.6.-OFTIONAL INPUT PARAMETERS THAT CAN BE SET BY USER
AND THEIR LOCATIONS. MEANINGS. AND DEFAULT VALUES

op t id
input

parameter

HO

HMAX

HMlN

MAXORD

MXSTEP

MXHNlL

Location

RWORK(5)

RWORK(6)

RWORK(7)

IWORK(5)

IWORK(6)

IWORK(7)

Meaning

Step size to be attempted on
the first step

Absolute value of largest step
size (in magnitude) to be
used on any step

Absolute value of smallest
step size (in magnitude) to

Maximum mcthod order to be
be uscd on any step.

used on any step

Maximum number of integra-
tion steps allowed on any
one call to LSODE

Maximum numbcr of times
that warning message that
step size is getting too small
is printed

Default value

Computed by LSODE

0

12 for Adams-Moulton
method and 5 for
backward differenti-
ation formula method

500

10

value is ignored on the first step and on the final step to reach TCRlT when
ITASK = 4 or 5 (see table 4.1).

80

RWORK

LRW

IWORK

LIW

JAC

4.2 Call !Sequence

A real work array used by the integrator. The subprogram calling
LSODE must include a dimension statement for RWORK. If ITASK =
4 or 5, the user must set RWORK(1) = TCRIT (see table 4.1) to
transmit this variable to LSODE. If any optional real input parameters
are used, their values are also passed in this array to LSODE, the
address for each of these parameters is given in table 4.6. Upon return
from LSODE, RWORK contains several optional real output
parameters. For each such output variable table 4.7 lists its location in
RWORK and its meaning. In addition, the Nordsieck history array at
the current value of the independent variable (TCUR in table 4.7) and
the estimated local error vector in the solution incurred on the last
successful step can be obtained from RWORK. Table 4.8 lists the
names used for these two quantities and their locations in RWORK.
In this table NYH is the value of NEQ on the first call to LSODE, and
NQCUR and LENRW are both defined in table 4.7, which also gives
their locations in the array WORK (see below).

Length of the real work array RWORK. Its minimum value depends
on the method flag MF (see below) and is given in table 4.9 for each
legal value of MF. In this table the integer W O R D is the maximum
method order (default values = 12 and 5 for t h e m and BDF methods,
respectively) to be used. The integers ML and MU are the lower and
upper half-bandwidths, respectively, of the Jacobian matrix if it is
declared to be banded (see table 3.2).

An integer work array used by the integrator. The subprogram calling
LSODE must include a dimension statement for IWORK. If MITER
(= second decimal digit of MF, defined below) = 4 or 5 (table 3.2), the
user must set IWORK(1) = ML and IWORK(2) =MU (see descriptions
above) to transmit these variables to LSODE. If any optional integer
input parameters are used, their values are also passed in this array to
LSODE; the address for each of these parameters is given in table 4.6.
Upon return from LSODE, IWORK contains several optional integer
output parameters. For each such output variable table 4.7 lists its
location in WORK and its meaning.

Length of the integer work array IWORK. Its minimum value depends
on MITER (table 3.2) and is given in table 4.10 for each legal value of
MITER.

The name of the user-supplied subroutine that computes the elements
of the Jacobian matrix. This name must be declared EXTERNAL in
the subprogram calling LSODE. The form and description of sub-
routine JAC are given in section 4.4.

81

TABLE 4.7.-OPTIONAL OUTPUT PARAMETERS RETURNED BY LSODE
AND THEIR LOCATIONS AND MEANINGS

Nordsieck history array for problem

Estimated local error in solution on
last successful step

Optional
output

parameter

Ku
HCUR
TCUR

TOLSF

NST

NFE

N E

NQU
NQCUR
IMXER

LENRW
LENW

YH RWORK(21) to

ACOR
RWORK(20 + NYH(NQCUR + 1))

RWORKCENRW)
RWORK(LENRW - NEQ + 1) to

TABLE 4

Location

RWORK(I1)
RWORK(12)
RWORK(13)

RWORK(14)

WORK(1 1)

WORK(12)

WORK(13)

WORK(14)
WORK(15)
WORK(16)

WORK(17)
IWORK(18)

Meaning

Step size used on last successful step
Step size to be attempted on next step
Current value of independent variable. The

integrator has successfully advanced the
solution to this point.

is computed when too much accuracy is
requested (ISTATE = -2 or -3. sce table 4.4).
To continue integration with the same ITOL,
the local error tolerance parameters RTOL
and ATOL must both be increased by at
least a factor of TOLSF.

Number of integration steps used so far for
problem

Number of derivative evaluations required so
far for problem

Number of Jacobian matrix evaluations (and
iteration matrix LUdccompositions or
inversions) so far for problem

Method order used on last successful step
Method order to be attempted on next step
Index of component with largest magnitude in

weighted local error vector (e,JEWTi, see
chapter 2). This quantity is computed when
repeated convergence or local error test
failures occur.

A tolerance scale factor, greater than 1.0, that

Required length for array RWORK
Required length for array IWORK

JSEFUL INFORMATIONAL QUANTITIES REGARDING INTEGRATION
THAT CAN BE OBTAINED FROM ARRAY RWORK

AND THEIR NAMES AND LOCATIONS

I Quantity N W Location I

82

4.3 User-Supplied Subroutine for Derivatives (F')
TABLE 49.-MINIMUM LENGTH REQUIRED BY REAL WORK

ARRAY RWORK (i.e., MINIMUM UW) FOR EACH MF

I MF I Minimum LRW' I
I020
11,12,21,22
13,23
14,152425

2O+NYH(MAXORD+1)+3NEQ
22 + NYH(MAX0RD + 1) + 3 NEQ + (NEWz
22 + NYH(MAX0RD + 1) + 4 NEQ
22 + "(WORD + 1) + (2 ML + Mu + 4)NEQ

~~

'NYH is the number of ODE'S specifid on first call to LSODE.
W O R D is the maximum method orda to be used for problem.
NEQ is the number of ODE's specified on cumnt call to LSODE,
and ML and MU are. resptively, the lower and upper half-
bandwidths of the baaded Jrobian matrix.

TABLE 4.IO.-hUNIMUM
LENGTH REQUIRED BY
INTEGER WORK ARRAY
WORK (is., MINIMUM
LIW) FOR EACH MITER

MITER' I MinimumLmb

:,2 I 20

4.5 2O+NEQ

'Sce table 3.2 for description

G Q z i number of ODE'S
specified on cumnt call to
LSODE.

MF Method flag that indicates both the integration method and corrector
iteration technique to be used. MF consists of the two decimal digits
METH, which specifies the integration method, and MITER, which
specifies the iteration technique (eq. (3.1)). Equation (3.1) and
tables 3.1 and 3.2 show that MF has the following 12 legal values-
10,11,12,13,14,15,20,21,22,23,24,and25. IfMF=14,15,24,or
25, the values of ML and MLT must be passed to LSODE as the first
and second elements, respectively, of the array WORK (see above).

4.3 User-Supplied Subroutine for Derivatives (F)

Irrespective of the solution method or corrector iteration technique selected to
solve the problem, the user must provide a subroutine that computes the derivatives
cf} for given values of the independent variable and the solution vector. The
name Q of this subroutine is an argument in the call vector to LSODE and must

83

4. Description of Code Usage

therefore be declared EXTERNAL in the subprogram calling LSODE. The
derivative subroutine F should have the form

SUBROUTINE F (NEQ, T, Y, YDOT)
DIMENSION Y(I), YDOT(1) in FORTRAN 66
or DIMENSION Y(*), YDOT(*) in FORTRAN 77

In addition, if NEQ is an array, the subroutine F should include a DIMENSION
statement for it. The routine F should not alter the values in T, NEQ (or NEQ(l),
if NEQ is an array), or the first N elements in Y, where N is the current number of
ODE’S to be solved. The derivative vector should be returned in the array YDOT,
with YDOT(1) = dyi/d5 (i = I), evaluated at 5 = T, y = Y.

If the calculation of ~} involves intermediate quantities whose current values,
that is, at 5 = cn (or co,J, are required externally to LSODE, a special calculation,
such as a call to the routine F, must be made. The results of the last call from the
package to the routine F should not be used because they correspond to a Y value
that is different from [or X(5,,J] and a 5 value that may be different from 5,
(or &ut). Here tn is the independent variable value to which the numerical
solution was advanced on the previous integration step and hut = TOUT. If a
special call to subroutine F is made, to reduce the storage requirement, the
YDOT argument may be replaced with RWORK(LSAVF), the base address of an
N-dimensional array, SAVF (see table 3.8), used for temporary storage by LSODE;
LSAVF is the 224th word (6th integer word after 218 real words) in the common
block LSOOOl (table 3.6). If the derivative gn is required, it can be obtained by
calling subroutine INTDY, as explained in section 4.8.

4.4 User-Supplied Subroutine for Analytical
Jacobian (JAC)

If the corrector iteration technique selected by the user requires a Jacobian
matrix, we recommend that a routine that computes an analytical Jacobian be
provided. The name (JAC) of this routine is an argument in the call vector to
LSODE and must therefore be declared EXTERNAL in the subprogram calling
LSODE. The Jacobian subroutine JAC should have the form

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
DIMENSION Y(1), PD (NROWPD, 1) in FORTRAN 66
DIMENSION Ye), PD (NROWPD, *) in FORTRAN 77

Here ML and MU are, respectively, the (user-supplied) lower and upper half-
bandwidths of the Jacobian matrix if it is banded; and NROWPD, which is set by

84

4.5 Detailed Usage Notes

the code, is the number of rows of the Jacobian matrix PD. For a banded matrix
NROWPD is equal to the extended bandwidth (= 2ML + MU + l), and for a full
matrix it is equal to the current number N of ODE's. If NEQ is an array, the
subprogram JAC must include a DIMENSION statement for it.

This routine should not alter the values in NEQ (or NEQ(l), if NEQ is an
array), T, ML, MU, or NROWPD. However, the Y array may, if necessary, be
altered. For a full Jacobian matrix (MITER = 1) the element PD(I,J) (I = l,...,N,
J = 1, ...,N) must be loaded with a&/ayi g=T;y=Y i = k j = J). In this case the

arguments ML and MU are not needed. If the Jacobian matrix is banded (MITER
= 4), the element aJ/ayj (i = 1, ..., N, i -ML sj i + MU) must be loaded into PD
(I - J + MU + 1, J) (I = i; J = j). Thus each band of the Jacobian matrix must be
loaded in column-wise manner, with diagonal lines of J, from the top down,
loaded into the rows of PD. For a diagonal matrix ML =MU = 0, and the diagonal
elements must be loaded into a single row of length N. In any case the solver sets
all elements of PD equal to zero before calling JAC, so that only the nonzero
elements need to be loaded. Also each call to subroutine JAC is preceded by a call
to subroutine F with the same arguments NEQ, T, and Y To improve computational
efficiency, intermediate quantities needed by both routines may be saved by
routine F in a common block, thereby avoiding recomputation by routine JAC. If
necessary, even the derivatives at T can be accessed by JAC by means of this
method.

If functional iteration (MITER = 0) or an internally generated Jacobian matrix
(MITER = 2, 3, or 5) is used, a dummy version of JAC may nonetheless be
required to satisfy the loader. This version may be given simply as follows:

I - (

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
RE=
END

4.5 Detailed Usage Notes

It is apparent from the description of the call sequence to LSODE that the code
has many capabilities and therefore requires the user to set values for several
parameters. To further clarify code usage and assist in selecting values for user-
set parameters, we provide here a somewhat detailed guide. We first summarize
how we expect the code to be normally used and then give detailed usage notes.
Additional insight into code usage can be obtained from the discussions by Byrne
and Hindmarsh (ref. 17), who examined in some detail the solution of 10 example
problems representing a variety of problem types, and by Radhakrishnan
(ref. 37), who studied the effects of various user-set parameters on the solution of
stiff ODE's arising in combustion chemistry.

85

4. Description of Code Usage

4.5.1 Normal Usage Mode

The normal mode of communication with LSODE may be summarized as
follows:

(1) Set initial values in Y.
(2) Set NEQ, T, ITOL, RTOL, ATOL, LRW, LIW, and ME
(3) Set TOUT = first output station, ITASK = 1, ISTATE = 1 , and IOPT = 0.
(4) Call LSODE.
(5) Exit if ISTATE < 0.
(6) Do desired output of Y.
(7) Exit if problem is finished.
(8) Reset TOUT to next print station and return to step (4).

This procedure will result in LSODE (a) computing the step size to be attempted
on the first step, (b) continuing the integration with step sizes generated internally
until the first internal mesh point at or, more usually, just beyond TOUT, and (c)
computing the solution at TOUT by interpolation. The returned value T will be
set equal to TOUT exactly, and Y will contain the solution at TOUT. Because the
normal output value of ISTATE is 2, it does not have to be reset for normal
continuation.

4.5.2 Use of Other Options

The calling subprogram may also make use of other options included in the
package. For example, in step (8) ISTATE could be reset to 3 to indicate that at
TOUT some parameters, such as NEQ or MF, have been changed. The task to be
performed, indicated by the value of ITASK, can, however, be changed without
resetting ISTATE. In the event of integration difficulties parameter values may
also be changed in step (3, followed by a return to step (4), if the new values will
prevent a recurrence of the indicated trouble.

4.5.3 Dimensioning Variables

Irrespective of the options selected, the subprogram calling LSODE must
include DIMENSION statements for all call sequence variables that are arrays.
Such variables include Y, RTOL, ATOL, RWORK, IWORK, and, as discussed
below, possibly NEQ. The solution vector Y may be declared to be of length NEQ
or greater. The first NEQ elements of the Y array must be the variables whose
ODE’S are to be solved. The remaining locations, if any, may be used to store
other real data to be passed to the routines F and/or JAC. The LSODE package
accesses only the first NEQ elements of Y the remaining elements are unchanged
by the code.

The parameter NEQ is usually a scalar quantity. However, an array NEQ may

86

4.5 Detailed Usage Notes
be used to store and pass integer data to the routines F and/or JAC. In this case the
first element of NEQ must be set equal to the number of ODE’S. The LSODE
package accesses only NEQ(1). However, NEQ is used as an argument in the
calls to the routines F and JAC, so that these routines, and the MAIN program,
must include NEQ in a DIMENSION statement.

4.5.4 Decreasing the Number of Differential Equations (NEQ)

In the course of solving a problem the user may decrease (but not increase) the
number of ODE’s. This option is useful if some variables reach steady-state
values while others are still varying. Dropping these constant quantities from the
ODE list decreases the size of the system and hence increases computational
efficiency. To use this option, upon return from LSODE at the appropriate time,
the calling subprogram must reset the value of NEQ (or NEQ(1)); set ISTATE = 3;
reset the values of all other parameters that are either required to continue the
integration, such as TOUT if ITASK = 1,3, or 4 (table 4.1), or are changed at the
user’s option; and then call LSODE again. If the Jacobian matrix is declared to be
banded (MITER = 4 or 5, table 3.2) and reductions can be made to the half-
bandwidths ML and Mu, they will also produce efficiency increases. The option
of decreasing the number of ODE’s may be exercised as often as the user .wishes.
Of course, each time the size of the ODE system is decreased the changes
discussed above should be made and the resulting number of ODE’s can never be
less than 1. However, the LRW and LIW values need not be reset.

If, at any time, the number of ODE’S is decreased from N to N’, LSODE will
drop the last N - N’ ODE’S from the system and integrate the first N‘equations. It
is therefore important in formulating the problem to order the variables carefully
and make sure that it is indeed the last N - N’ variables that attain steady-state
values. In continuing the integration LSODE will access only the first N’ elements
of Y However, the remaining N - N‘, or more, elements can be accessed by the
user, and so no special programming is needed in either routine F or JAC.

4.5.5 Specification of Output Station (TOUT)

The argument TOUT must be reset every time LSODE is called if the option
given by ITASK = 1 , 3, or 4 is selected. For the other two values of ITASK (Le., 2
and 5), TOUT need be set only on the first call to LSODE. Irrespective of the
value of ITASK, the TOUT value provided on the first call to LSODE is used to
determine the direction of integration and, if the user has not supplied a value for
it, to compute the step size to be attempted on the first step. Therefore unless the
user specifies the value for the initial step size, it is recommended that some
thought be given to the value used for TOUT on the first call to LSODE.

On the first call to LSODE, that is, with ISTATE = 1, TOUT may be set equal to
the initial value of the independent variable. In this case LSODE will do nothing,
and so the value ISTATE = 1 will be returned to the calling subprogram; however,

87

4. Description of Code Usage

an internal counter will be updated to prevent repeated calls of this nature. If such
a “first” call is made more than four times in a row, an error message will be
issued and the execution terminated.

On the second and subsequent calls to LSODE there is no requirement that the
TOUT values be monotonic. However, a value for TOUT that “backs up” is
limited to the current internal interval [(TCUR - HU),TCUR], where TCUR is the
current value of the independent variable and HU is the step size used on the
previous step.

4.5.6 Specification of Critical Stopping Point (TCRIT)

In addition to TOUT a value must be specified for TCRIT if the option
ITASK = 4 is selected. TCRIT may be equal to TOUT or beyond it, but not
behind it, in the direction of integration. The integration is not permitted to
overshoot TCRIT, so that the option is useful if, for example, a singularity exists
at or beyond TCRIT. This variable is also required with the option ITASK = 5. In
either case the first element of the array RWORK (i.e., RWORK(1)) must be set
equal to TCRIT. If the solver reaches TCRIT within roundoff, it will return
T = TCRIT exactly and the solution at TCRIT is returned in Y. To continue
integrating beyond TCRIT, the user must reset either ITASK or TCEUT. In either
case the value of ISTATE need not be reset. However, whenever TCRIT is
changed, the new value must be loaded into RWORK(1).

4.5.7 Selection of Local Error Control Parameters (ITOL, RTOL, and
ATOL)

Careful thought should be given to the choice of ITOL, which together with
RTOL and ATOL determines the nature of the error control performed by LSODE.
The value of ITOL dictates the value of the local error weight vector m, with
element EWTj defined as

EWT~ = RTOL,~~~+ATOL, , (4.1)

where RTOLj and ATOL, are, respectively, the local relative and absolute error
tolerances for the ith solution component Yj and the bars 1.1 denote absolute value.
The solver controls the estimated local errors {d i} in { Yi] by requiring the root-
mean-square (rms) norm of dj/EWTj to be 1 or less.

Pure relative error control for the ith solution component is obtained by setting
ATOL, = 0; RTOLi is then a measure of the number of accurate significant fig-
ures in the numerical solution. This error control is generally appropriate when
widely varying orders of magnitude in Yj are expected. However, it cannot be
used if the solution vanishes because relative error is then undefined. Pure
absolute error control for the ith solution component is obtained by setting

88

4.5 Detailed Usage Notes
RTOLi = 0; ATOLi is then a measure of the largest number that may be neglected.

Both RTOL and ATOL can be specified (1) as scalars, so that the same error
tolerances are used for all variables, or (2) as arrays, so that different tolerances
are used for different variables. The value of the user-supplied parameter ITOL
indicates whether RTOL and M O L are scalars or arrays. The legal values that

-can be assigned to ITOL and the corresponding types of RTOL and M O L are
given in table 4.2. If RTOL and/or ATOL are arrays, the calling subprogram must
include an appropriate DIMENSION statement. A scalar RTOL is generally
appropriate if the same number of significant figures is acceptable for all
components of Y. A scalar ATOL is generally appropriate when all components of
Y, or at least their peak values, are expected to be of the same magnitude.

In addition to ITOL, RTOL and ATOL should be selected with care. Now the
code controls an estimate of only the local error, that is, an estimate of the error
committed on taking a single step, starting with data regarded as exact. However,
what is of interest to the user is the global truncation error or the actual deviation
of the numerical solution from the exact solution. This error accumulates in a
nontrivial manner from the local errors and is neither measured nor controlled by
the code. It is therefore recommended that the user be conservative in choosing
values for the local error tolerance parameters. However, requesting too much
accuracy for the precision of the machine will result in an error exit (table 4.4). In
such an event the minimum factor TOLSF by which RTOL and ATOL should both
be scaled up is returned by LSODE (see table 4.7). Some experimentation may be
necessary to optimize the tolerance parameters, that is, to determine values that
produce sufficiently accurate solutions while minimizing the execution time. The
global errors in solutions generated with particular values for the local error
tolerance parameters can be estimated by comparing them with results produced
with smaller tolerances. In reducing the tolerances all components of RTOL and
ATOL, and hence of EwT, should be scaled down uniformly.

There is no requirement that the same values for ITOL, RTOL, and ATOL be
used throughout the problem. If during the course of the problem any of these
parameters is changed, the user should reset ISTATE = 3 before calling LSODE
again. (ISTATE need not be reset; however, LSODE will not then check the
legality of the new values.) This option is useful, for example, if the solution
displays rapid changes in a small subinterval but is relatively smooth elsewhere.
To accurately track the solution in the rapidly varying region, small values of
RTOL and ATOL may be required. However, in the smooth regions these
tolerances could be increased to minimize execution time.

4.5.8 Selection of Integration and Corrector Iteration Methods (MF)

The choice of the method flag MF may also require some experimentation. The
user should consider the nature of the problem and storage requirements. The
primary consideration regarding MF is stiffness. If the problem is not stiff, the
best choice is probably MF = 10 (Adams-Moulton (AM) method with functional

89

4. Description of Code Usage

iteration.) If the problem is stiff to a significant degree, METH should be set
equal to 2 (table 3.1), and MITER (table 3.2) depends on the structure of the
Jacobian matrix. If the Jacobian is banded, MITER = 4 (user-supplied analytical
Jacobian) or 5 (internally generated Jacobian by finite-difference approximations)
should be used. For either of these two MITER values the user must set values for
the lower (ML) and upper (MU) half-bandwidths of the Jacobian matrix. The first
and second elements of the integer work array IWORK must be set equal to ML
and MU, respectively; that is, IWORK(1) = ML and IWORK(2) = MU. For a full
matrix MITER should be set equal to 1 (analytical Jacobian) or 2 (internally
generated Jacobian). If the matrix is significantly diagonally dominant, the choice
MITER = 3, that is, Jacobi-Newton (JN) iteration using an internally generated
diagonal approximation for the Jacobian matrix, can be made. To use this
iteration technique with an analytical Jacobian, set MITER = 4 and ML = MU = 0.

If the problem is only mildly stiff, the choice METH = 1 (Le., the AM method)
may be more efficient than METH = 2 (i.e., the backward differentiation formula
(BDF) method). For this case experimentation would be necessary to identify the
optimal METH. If the user has no a priori knowledge regarding the stiffness of
the problem, one way to determine its nature is to try MF = 10 and examine the
behavior of both the solution and step size pattern. (It is recommended that some
upper limit be set for the total number of steps or derivative evaluations to avoid
excessive run times.) If the typical values of the step size are much smaller than
the solution behavior would appear to require, for example, more than 100 steps
are taken over an interval in which the solution changes by less than 1 percent, the
problem is probably stiff. The degree of stiffness can be estimated from the step
sizes used and the smoothness of the solution.

Irrespective of the integration method selected, the least effective iteration
technique is functional iteration, given by MITER = 0, and the most effective is
Newton-Raphson (NR), given by MITER = 1 or 2 (4 or 5 for a banded Jacobian
matrix). Generally JN iteration is somewhere in between. However, storage
requirements increase in the same order as the effectiveness of the iteration
technique (see table 4.9), and so trade-off considerations are necessary. For
reasons of computational efficiency the user is encouraged to provide a routine for
computing the analytical Jacobian, unless the system is fairly complicated and
analytical expressions cannot be derived for the matrix elements. The accuracy of
the Jacobian calculation can be checked by comparison with the J internally
generated with MITER = 2 or 5. Jacobi-Newton iteration requires considerably
less storage and execution time per iteration but will be effective only if the
Jacobian matrix is significantly diagonally dominant.

The importance of supplying an analytical Jacobian matrix, especially for large
problems, is illustrated by Radhakrishnan (ref. 37), who studied 12 test problems
from combustion kinetics. The problems covered a wide range of reaction
conditions and reaction mechanism size. The effects on solution efficiency of
(1) METH, (2) the first output station, and (3) optimizing the local error tolerances
were also examined.

90

4.6 Optional Input

4.5.9 Switching Integration and Corrector Iteration Methods

The user may specify different values for MF in different subintervals of the
problem. This option is useful if the problem changes character and is nonstiff in
some regions and stiff elsewhere. Because stiff problems are usually characterized
by a nonstiff initial “transient” region, one could use MF = 10 in the initial region
and then switch to MF = 21 (the BDF method with NR iteration using an
analytical Jacobian matrix) in the later stiff regime. It is very straightfoiward to
change integration methods and corrector iteration techniques. Upon return from
LSODE the user simply resets MF to the desired new value. The other action
required is to reset ISTATE = 3 before calling LSODE again. The lengths LRW
and LIW, respectively, of the arrays RWORK and IWORK depend on MF (see
tables 4.9 and 4.10). If different methods are to be used in the course of solving a
problem, storage corresponding to at least the maximum values of LRW and LIW
must be allocated. That is, the dimensions of RWORK and IWORK must be set
equal to at least the largest of the LRW and LIW values, respectively, required by
the different methods to be used.

4.6 Optional Input

In addition to the input parameters whose values are required by the code, the
user can set values for several other Parameters to control both the integration and
the output from the code. These optional input parameters are given in table 4.6,
together with their locations and default values. If any of these parameters are
used, the user must set IOPT = 1 to relay this information to the solver, which will
examine all optional input parameters and select only those for which nonzero
values are specified. A value of zero for any parameter will cause its default value
to be used. Thus to use a subset of the optional inputs, set RWORKO = 0.0 and
IWORKO = 0 (I = 5 to 7), and then set parameters of interest to the desired
(nonzero) values. The variable HO, the step size to be attempted on the first step,
must indicate the direction of integration. That is, HO must be a positive quantity
for integration in the forward direction (increasing values of the independent
variable) and negative otherwise. All other input parameters must be positive
numbers; otherwise, an error exit will occur.

To reset any optional input parameter on a subsequent call to LSODE, ISTATE
must be set equal to 3. IOPT is not altered by LSODE and therefore need not be
reset. Also because the code does not alter the values in RWORK (5) to RWORK
(7) and IWORK(5) to IWORK(7), only parameters for which new values are
required need to be reset. To specify a default value for any parameter for which a
nondefault value had previously been used, simply load the appropriate location
in RWORK or IWORK with a zero. Of course, if all variables are to have default
values, simply reset IOPT = 0.

91

4. Description of Code Usage

4.6.1 Initial Step Size (HO)

The sign of the step size HO must agree with the direction of integration;
otherwise, an error exit will occur. Also, its magnitude should be considerably
smaller than the average value expected for the problem because the code starts
the integration with a first-order method. Of course, the integrator tests that the
given step size does produce a solution that satisfies the local error test and, if
necessary, decreases it (in magnitude). The only test made on the magnitude of
HO prior to taking the first step is that it does not exceed the user-supplied value
for HMAX, the maximum absolute step size allowed for the problem.

4.6.2 Maximum Step Size (HMAX)

The user may have to specify a finite value for HMAX (default value, -) if the
solution is characterized by rapidly varying transients between long smooth
regions. If the step size is too large, the solver may skip over the fine detail that
the user may be (primarily) interested in. An example of this behavior is the
buildup of ozone and oxygen atom concentrations in the presence of sunlight
(ref. 17).

4.6.3 Maximum Method Order (MAXORD)

The optional input parameter MAXORD, the maximum method order to be
attempted on any step, should not exceed the default value-12 for the AM
method and 5 for the BDF method. If it does, it will be reduced to the default
value. Also, in the course of solving the problem, if MAXORD is decreased to a
value less than the current method order, the latter quantity will be reduced to the
new MAXORD.

The maximum method order has to be restricted to a value less than the default
value for stiff problems when the eigenvalues of the Jacobian matrix are close to
the imaginary axis; that is, the solution is highly oscillatory. In such a situation
the BDF method of high order (2 3) has poor stability characteristics and, as the
stability plots in Gear (ref. 10) show, the unstable region grows as the order is
increased. For this reason MAXORD should be set equal to 3 unless the
eigenvalues are imaginary; that is, Re&) = 0 and Im(hi) # 0, where Re&) and
Im(hi) are the real and imaginary parts of hi, the ith eigenvalue. In this case the
value MAXORD = 2 should be used.

4.7 Optional Output

The user is usually primarily interested in the numerical solution and the
corresponding value of the independent variable. These quantities are always
returned in the call variables Y and T. In addition, several optional output

92

4.8. Other Routines

quantities that contain information about the integration are returned by LSODE.
These quantitites are given in tables 4.7 and 4.8, together with their locations.
Some of these quantities give a measure of the computational work required and
may, for example, help the user decide if the problem is stiff or if the right method
is being used. Other output quantities will, in the event of an error exit, help the
user either set legal values for some parameters or identify the reason for repeated
convergence failures or local error test failures.

4.8 Other Routines

To gain additional capabilities, the user can access the following subroutines
included in the LSODE package: INTDY, SRCOM, XSETF, and XSETUN.
Among these, only INTDY is used by LSODE.

4.8.1 Interpolation Routine (Subroutine INTDY)

The subroutine INTDY provides derivatives of Y, up to the current order, at a
specified point T and may be called only after a successful return from LSODE.
The call to this routine takes the form

CALL INTDY (T, K, RWORK(21), NYH, DKY, FLAG)

where T, K, RWORK(21), and NYH are input parameters and DKY and FLAG
are output parameters. The arguments to lNTDY are defined as follows:

T

K

RWORK(2 1)

NYH

Value of independent variable at which the results are required.
For the results to be valid T must lie in the interval [(TCUR -
HU),TCUR], where TCUR and HU are defined in table 4.7.

Integer that specifies the desired derivative order and must satisfy
0 I K I current method order NQCUR (see table 4.7 for location
of this quantity). Now, because the method order is never less
than 1, the first derivative a/& can always be obtained by
calling INTDY.

Base address of the Nordsieck history array (see table 4.8).

Number of ODE's used on the first call to LSODE. If the number
of ODE's is decreased during the course of the problem, NYH
should be saved. An alternative way of obtaining NYH is to
include the common block LSOOOl in the subprogram calling
INTDY. LSODE saves NYH in LSOOOl as the 232nd word-the
14th integer word after 218 real words (see table 3.6).

93

4. Description of Code Usage

DKY Array of length N that contains the Kth derivative of Y at T. The
subprogram calling INTDY must include a DIMENSION statement
for DKY if NYH > 1. Alternatively, to save storage, DKY can be
replaced with RWORK(LSAVF)-see section 4.3.

IFLAG An error flag with following values and meanings:
0

-1
-2

Both T and K were legal.
Illegal value was specified for K.
Illegal value was specified for T.

4.8.2 Using Restart Capability (Subroutine SRCOM)

The subroutine SRCOM is useful if one is either alternating between two or
more problems being solved by LSODE or interested in interrupting a run and
restarting it later. The latter situation may arise, for example, if one is interested in
steady-state values with no a priori knowledge of the required integration interval.
The run may be stopped periodically, the results examined and, if necessary, the
integration continued. This procedure is clearly more economical than making
repeated runs on the same problem with, say, increasing values of TOUT. To
exploit the capability of stopping and then continuing the integration, the user
must save and then restore the contents of the common blocks LSOOOl and
EHOOO1. This information can be stored and restored by calling SRCOM. The
call to this routine takes the form

CALL SRCOM (RSAV, ISAV, JOB)

where RSAV must be declared as a real array of length 2 18 or more in the calling
subprogram and ISAV as an integer array of length 41 or more and JOB is an
integer flag whose value (= 1 or 2) indicates the action to be performed by
SRCOM as follows: JOB = 1 means “save the contents of the two common
blocks,’’ and JOB = 2 means “restore this information.”

Thus to store the contents of EHOOOl and LSOOOl, SRCOM should be called as
follows:

CALL SRCOM (RSAV, ISAV, 1)

Upon return from SRCOM, RSAV and ISAV will contain, respectively, the 21 8
real and 39 integer words that together make up the common block LSOOOl. The
40th and 41st elements of ISAV will contain the two integer words MESFLG and
LUNIT in the common block EHOOOl (table 3.6). The lengths and contents of the
arrays RWORK and WORK must also be saved. The lengths LENRW and
LENIW required for the arrays RWORK and IWORK are saved by LSODE as the
17th and 18th elements, respectively, of the array IWORK (see table 4.7).

To continue the integration, the arrays RWORK and IWORK and the contents
of the common blocks LSOOOl and EHOOOl must be restored. The common block

94

4.9 Optionally Replaceable Routines

contents are restored by using the previously saved arrays RSAV and ISAV and
calling the routine SRCOM as follows:

CALL SRCOM (RSAV, ISAV, 2)

The user should then set values for the input parameters required by LSODE, and
the integration can be continued by calling this routine. Note, in particular, that
ISTATE must be set equal to 2 or 3 to inform LSODE that the present call is a
continuation one for the problem (see table 4.3).

4.8.3 Error Message Control (Subroutines XSETF and XSE")

To reset the value of the logical unit number LuNlT for output of messages
from the code, the routine XSETUN should be called as follows:

CALL XSETUN (LUN)

where LUN is the new value for LUNIT. Action is taken only if the specified
value is greater than zero.

The value of the flag MESFLG, which controls whether messages from the
code are printed or not, may be reset by calling subroutine XSETF as follows:

CALL XSETF (MFLAG)

where MFLAG is the new value for MESFLG. The legal values for MFLAG are
0 and 1. Specifying any other value will result in no change to the current value
of MESFLG. Setting MFXAG = 0 does carry the risk of losing valuable information
through error messages from the integrator.

4.9 Optionally Replaceable Routines

If none of the error control options included in the code are suitable, more
general error controls can be obtained by substituting user-supplied versions of
the routines EWSET and/or WORM (table 3.3). Both routines are concerned
with measuring the local error. Hence any replacement may have a major impact
on the performance of the code. We therefore recommend that modifications be
made only if absolutely necessary, and that too with great caution. Also the effect
of the changes and the accuracy of the programming should be studied on some
simple problems.

4.9.1 Setting Error Weights (Subroutine EWSET)

The subroutine EWSET sets the array of error weights EWT, equation (4.1).
This routine takes the form

95

4. Description of Code Usage

SUBROUTINE EWSET (N, ITOL, RTOL, ATOL, YH, EWT)

where N is the current value of the number of ODE’S; ITOL, RTOL, ATOL, and
EWT have been defined previously; and YH contains the current Nordsieck
history array, that is, the current solution vector YCUR and its NQ scaled
derivatives, where NQ is the current method order. On the first call to EWSET
from the routine LSODE, YCUR is the same as the Y array (which then contains
the initial values supplied by the user); thereafter the two arrays may be different.

The error weights {EWTi} are used in the local truncation error test, which
requires that the rms norm of diEWT, be 1 or less. Here, di is the estimated local
error in Yi. The above norm is computed in the routine VNORM (discussed in
section 4.9.2) to which the EWT array is passed.

If the user replaces the current version of EWSET, the new version must return
in each EWTi (i = 1 ,..., N) a positive quantity for comparison with di. This routine
is called by the routine LSODE only (tables 3.4 and 3.5). However, in addition to
its use in the local truncation error test (which is performed in the routine
STODE), EWT is used (1) by the routine LSODE in computing the initial step
size HO and the optional output integer IMXER (table 4.7) and (2) by the routine
PREPJ in computing the increments in solution vector for the difference quotient
Jacobian matrix (MITER = 2 or 5, table 3.2) and for the diagonal approximation
to the Jacobian matrix (MITER = 3). The base address for EWT in the array
RWORK is LEWT, which is the 222nd word (the 4th integer word after 218 real
words) in the common block LSOOOl .

If the user’s version of EWSET uses current values of the derivatives of Y, they
can be obtained from YH, as described later. Indeed, derivatives of any order, up
to NQ, can be found from YH, whose base address in RWORK is LYH (= 21), the
221st word (the 3rd integer word past 21 8 real words) in LSOOOl. The array YH is
of length NYH(NQ + l), where NYH is the value of N on the first call to LSODE.
The first N elements correspond exactly to the YCUR array. The remaining terms
contain scaled derivatives of YCUR. For example, the N elements J*NYH + 1 to
J*NYH + N (J = O,l, ..., NQ) contain the Jth scaled derivative HJyCJ)/J!, where H is
the current value of the step size. On the first call to EWSET, before any
integration is done, H is (temporarily) set equal to 1 .O. Thereafter its value may be
determined from LSOOO1, where it is the 212th real word. This common block
also contains NYH as the 232nd word (the 14th integer word past 218 real words)
and NQ as the 253rd word (the 35th integer word past 21 8 real words). Thus if the
user wishes to use the Jth derivative in EWSET, it may be obtained by including
the following statements:

SUBROUTINE EWSET (N, ..., YH, ..., EWT)
REAL (or DOUBLE PRECISION) YH, EWT, RLS, H, ...
INTEGER N, ILS, NQ, NYH, ...
DIMENSION YH(l), EWT(I), ... in FORTRAN 66
DIMENSION YH(*),EWT(*), ... in FORTRAN 77

96

4.9 Optionally Replaceable Routines

COMMON/LSOOO1/RLS(218), ILS(39)
NQ=ILS(35)
NYH = ILS(14)
H = RLS(212)

The Jth derivative (0 5 J 5 NQ) is then given by

J! YH(J*NYH+I)
yp = , I=l , ..., N,

HJ

where Yinis the Jth derivative of YI. The routine must include a data type
declaration and a DIMENSION statement for 2n. To save on storage, these
values may be stored temporarily in the vector EWT.

4.9.2 Vector-Norm Computation (Function VNORM)

The real (or double precision) function routine VNORM computes the weighted - root-mean-square (rms) norm of a vector. It is used as follows:

where N is the length of the real arrays V, which contains the vector, and W, which
contains the weights. Upon return from VNORM, D contains the weighted rms-
norm

This routine is used by STODE to compute the weighted rms norm of the
estimated local error. STODE also uses information returned by WORM to
perform the corrector convergence test and to compute factors that determine if
the method order should be changed. Other routines that access WORM are
LSODE, to compute the initial step size HO, and PREPJ, to compute the increments
in the solution vector for generating difference quotient Jacobians (MITER = 2 or
5, table 3.2).

If the user replaces the routine VNORM, the new version must return a positive
quantity in VNORM, suitable for use in local error and convergence testing. The
weight array W can be used as needed, but it must not be altered in WORM. For
example, the max-norm, that is, maxlVflj, satisfies this requirement, as does a
n o m that ignores some components of V. The latter procedure has the effect of
suppressing error control on the corresponding components of 1.

97

4. Description of Code Usage

4.10 Overlay Situation

If LSODE is to be used in an overlay situation, the user must declare the
variables in the call sequence to LSODE and in the two internal common blocks
LSOOOl and EHOOOI in the MAIN program to ensure that their contents are
preserved. The common block LSOOOl is of length 257 (218 real or double-
precision words followed by 39 integer words), and EHOOOI contains two integer
words (see table 3.6).

4.11 Troubleshooting

In this section we present a brief discussion of the corrective actions that may
be taken in case of difficulty with the code. If the execution is terminated
prematurely, the user should examine the error message and the value of ISTATE
returned by LSODE (table 4.4). We therefore recommend that the current value of
MESFLG not be changed, at least until the user has gained some experience with
the code. The legality of every input parameter, both required and optional, is
checked. If illegal input is detected by the code, it returns to the calling subprogram
with ISTATE = -3. The error message will be detailed and will make clear what
corrective actions to take. If the illegal input is caused by a request for too much
accuracy, the user should examine the value of TOLSF returned in RWORK(13)
(table 4.7) and make necessary adjustments to RTOL and ATOL, as described in
section 4.5.7. If an excessive accuracy requirement is detected during the course
of solving the problem, the value ISTATE = -2 is returned. To continue the
integration, make the adjustments mentioned above, set ISTATE = 3, and call
LSODE again.

Another difficulty related to accuracy control may be encountered if pure
relative error control for, say, the ith variable is specified (Le., ATOLj = 0). If this
solution component vanishes, the error test cannot be applied. In this situation the
value ISTATE = -6 is returned to the calling subprogram. The error message
identifies the component causing the difficulty. To continue integrating, reset
ATOL for this component to a nonzero value, set ISTATE = 3, and call LSODE
again.

If more than MXSTEP (default value, 500) integration steps are taken on a
single call to LSODE without completing the task, the error return ISTATE = -1 is
made. The problem might be the use of an inappropriate integration method or
iteration technique. The use of MF = 10 (or 20) on a stiff problem is one example.
The user should, as described previously under the selection of MF (section
4.5.8), verify that the value of MF is right for the problem. Very stringent accuracy
requirements may also cause this difficulty. Another possibility is that pure
relative error control has been specified but most, or all, of the 1x1 are very small
but nonzero. Finally, the solution may be varying very rapidly, forcing the
integrator to select very small step sizes, or the integration interval may be very

98

4.U Troubleshooting

long relative to the average step size. To continue the integration, simply reset
ISTATE = 2 and call LSODE again-the excess step counter will be reset to zero.
To prevent a recurrence of the error, the value of MXSTEP can be increased, as
described in section 4.6. If this action is taken between calls to LSODE, ISTATE
must be set equal to 3 before LSODE is called again. Irrespective of when
MXSTEP is increased, IOPT should be set equal to 1 before the next call to
LSODE.

If the integrator encounters either repeated local error test failures or any local
error test failure with a step size equal to the user-supplied minimum value HMIN
(table 4.6), LSODE returns with ISTATE = -4. The difficulty could be caused by
a singularity in the problem or by inappropriate input. The user should check
subroutines F and JAC for errors. If none is found, it may be necessary to monitor
intermediate quantities. The component IMXER causing the error test failure is
returned as IWORK(16) (table4.7). The values Y(IMXER), RTOL(IMXER),
ATOL-R), and ACOR(IMXER) (see table 4.8) should be examined. If pure
relative error control had been specified for this component, very small but
nonzero values of Y(IMXER) may cause the difficulty.

These checks should also be made if the integration fails because of either
repeated corrector convergence test failures or any such failure with a step size
equal to HMIN. In this case LSODE returns the value ISTATE = -5 along with a
value for IMXER defined above. If an analytical Jacobian is being used, it should
be checked for errors. The accuracy of the calculation can also be checked by
comparing J with that generated internally. Another reason for this failure may be
the use of an inappropriate MITER, for example, MITER = 3 for a problem that
does not have a diagonally dominant Jacobian. It may be helpful to try different
values for MITER and monitor the successive corrector estimates stored as the Y
array in subroutine STODE.

In addition to the error messages just discussed, a warning message is printed if
the step size H becomes so small that T + H = T on the computer, where T is the
current value of the independent variable. This error is not considered fatal, and
so the execution is not terminated nor is a return made to the calling subprogram.
No action is required by the user. The warning message is printed a maximum
number of MXHNIL (default value, 10) times per problem. The user can change
the number of times the message is printed by resetting MXHNIL, as discussed in
section 4.6. To indicate the change to LSODE, the parameter IOPT must be set
equal to 1 before LSODE is called.

99

Chapter 5
Example Problem
5.1 Description of Problem

In this chapter we demonstrate the use of the code by means of a simple stiff
problem taken from chemical kinetics. The test case, described elsewhere (refs.
17,28, and 38), consists of three chemical species participating in three irreversible
chemical reactions at constant density and constant temperature:

kl

s, + 52,

k3 s2+s, -+ s3+s3,

with kl = 4 ~ 1 0 - ~ , k2 = lo4, and k3 = 1 . 5 ~ 1 0 ~ . In reactions (5.1) to (5.3), Si is the
chemical symbol for the ith species, the arrows denote the directions of the
reactions (the single arrow for each reaction means that it takes place in the
indicated direction only), and the {kj} are the specific rate coefficients for the
reactions. The units of kj depend on reaction type (e.g., ref. 39). If yi denotes the
molar concentration of species i, that is, moles of species i per unit volume of
mixture, the governing ODE’S are given by

* = - 0.04 y1 + 1 0 4 ~ ~ ~ ~ ,
dt (5-4)

%= 0 . 0 4 ~ ~ - 1 0 4 ~ ~ ~ ~ -3x107y2y2,
dt

101

5. Example Problem

%= 3x107y2y2,
dt

where t is time in seconds. The initial conditions are

Y1(t=O)=l; ~ ~ (r = O) = ~ ~ (t = 0) = 0 . (5.7)

The example problem is interesting because the reaction rate coefficients vary
over nine orders of magnitude. Also it can be quite easily verified that at steady
state, that is, as t + 00, y1+ 0, y2 + 0, and y3 + 1. To study the evolution of the
chemical system, including the approach to the final state, we integrate the ODE’s
up to t = 4 ~ 1 0 ’ ~ s , generating output at t = 0 . 4 ~ 1 r s (n = O,l, ..., 11).

5.2 Coding Required To Use LSODE

5.2.1 General

All of the coding required to solve the example problem with LSODE is
included (in the form of comment statements) in the package supplied to the user.
The MAIN program that calls LSODE and manages output is given in figure 5.1.
Figure 5.2 lists the subroutine that computes the derivatives. Because a value of
MITER = 1 is used (fig. 5.1), a routine that computes the analytical Jacobian
matrix is required. This routine is given in figure 5.3. The names used for the
derivative and Jacobian matrix subroutines are, respectively, FEX and JEX.
Therefore these names are used as arguments in the call to LSODE and declared
EXTERNAL in the MAIN program (fig. 5.1).

5.2.2 Selection of Parameters

Because the problem is stiff, the choice METH = 2 is made. For the same
reason functional iteration, that is, MITER = 0, is rejected. It is straightforward to
compute the analytical Jacobian matrix, which should be used for reasons of
efficiency. In any case, the choice MITER = 3, that is, Jacobi-Newton iteration,
must not be made because the Jacobian matrix is not diagonally dominant. The
choice MITER = 4 with ML = 1 and MU = 2 could be made but will require more
storage than MITER = 1 (see table 4.9). More importantly the computational
overhead for the LU-decomposition of the iteration matrix is more for MITER = 4
than for MITER = 1. Hence the value MF = 21 is used.

The number NEQ of ODE’s is equal to the number (= 3) of chemical species.
To minimize storage, the lengths LRW and LIW of the work arrays RWORK and
IWORK are set equal to their minimum required values. According to the
formulas given in tables 4.9 and 4.10 for MF = 21, these lengths are as follows:

102

5.2 Coding Required To Use LSODE

EXTERNAL FEX, JEX
DOUBLE PRECISION ATOL, RUORK, RTOL, T, TOUT, Y
DIMENSION Y (3), ATOL(3), RYORK(58), IWRK(23)
NEQ = 3

T - 0-W _ _ _ _
TOUT = .4W
ITOL = 2
RTOL l.D-4

ITASK = 1
ISTATE = 1
IOPT - 0
m=58
L I Y - 23
MF = 21
00 40 IOUT = 1,12

CALL L!3DE(FEX,NEQ,Y,T,TWT, ITOL,RTOL,ATOl, ITASK,ISTATE,
1 IOPT, RWORK, LRV, IWRK, LIY, JEX,WF)

m I T E (3 1 a) T, Y(1) I r(2) a Y(3)
20 FOW(AT(7H AT T =,E12.4,6H Y =,3E15.7)

40 TOUT - TOUT*lO-W
IF (ISTATE .LT. 0) 60 TO 80

~ I T E (3 , 6 O) I W R K (l l) , IYORK(lZ), IYORK(13)

STnP
60 FORHAT(/lZH n0. STEPS =,14111H NO. F-S ~ 8 1 4 , l l H NO. J-S =,14)

80 GiTE(3,90) ISTATE
90 FOW(AT(///ZH ERROR HALT.. ISTATE -,IS)

STOP
U I D

Figure 5.1 .-Listing of MAIN program for example problem.

SUBROUTINE FEX (NEQ, T, Y, YWT)
WUBLE PRECISION T, Y, YDOT
DIMENSION Y(3), YDoT(3)
Y W T 1
YWT131 = J.D7*Y(Z)*Y(Z)
YM)T 2 -YDOT(l) - YDOT(3)
RETURN
Em

computes derivatives for example problem.

a -.04DO*Y(1) + l.D4*Y(Z)*Y(3)

Figure 59.-Listing of subroutine (FEW that

LRW =22 + 3(5 + 1) + 3(3) + 32 = 58
and

LIW = 20 + 3 = 23.

Selection of the error tolerances requires some explanation. A scalar RTOL is
used because the same number of significant figures is acceptable for all
components. However, because y2 is expected to be much smaller than both y1

103

5. Example Problem
SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD)
DOUBLE PRECISION PD, TI Y
DIHENSION Y(3), PD(WRPD.3)
PD(1.1) -.04DO

RETURN
END

1. D4*Y 3
1 .D4*Y 121
.04DO
-PD(l , 3)
6.D7*Y (2)
-PD(l,Z) -

Figure 5.3.-Listing of subroutine (JEX) that computes
analytical Jacobian matrix for example problem.

and p3, an array ATOL, with ATOL(2) much smaller than both ATOL(1) and
ATOL(3), is used. For these choices of the RTOL and ATOL types, table 4.2 gives
ITOL = 2. Pure relative error control cannot be used because the initial values of
both y2 and p3 are zero and, as t -+ 00, p1 -+ 0 and p2 -+ 0. Pure absolute error
control should not be used because of the widely varying orders of magnitude of
the {y , } . Note that because a scalar RTOL is used, the MAIN program does not
require a DIMENSION statement for this variable.

The remainder of the program calling LSODE is straightforward and self-
explanatory. Because the output value for ISTATE is equal to 2 for a normal
return from LSODE and no parameter (except TOUT) is reset between calls to
LSODE, ISTATE does not have to be reset.

5.3 Computed Results

The output from the program, obtained on the Lawrence Livermore Laboratory’s
CDC-7600 computer using single-precision arithmetic, is given in figure 5.4. In
addition to the results at the specified times, values for the following parameters,
which give a measure of the computational work required to solve the problem,
are printed at the end: total number of integration steps (STEPS), total number of
derivative evaluations (F-S), and total number of Jacobian matrix evaluations and
LU-decompositions of the iteration matrix (J-S).

AT T =
AT T =
AT T =
AT T =
AT T =
AT T =
AT T *
AT T =
AT T =
AT T =
AT T =
AT T =

4.0000E-01
4.00OOE+OO
4.00OOE+Ol
4 .OOOOE+O2
4.0000E+03
4.0000E+04
4.0000E+05
4.0000E+06
4.0000E+07
4.0000E+08
4.0000E+09
4.0000E+10

Y =
Y =
Y =
Y =
Y =
Y =
Y -
Y -
Y =
Y =
Y =
Y =

9.851726E-01
9.055142E-01
7.158050E-01
4.504846E-01
1.831701E-01
3.897016E-02
4.935213E-03
5.159269E-04
5.306413E-05
5.494529E-06
5.129458E-07

-7.170592E-08

3.386406E-05

9.184616E-06
3.222434E-06
8.940379E-07
1.621193E-07
1.983756E-08
2.064759E-09
2.122677E-10
2.197824E-11
2.051784E-12

-2.868236E-13

2. 2 4 ~ i a ~ - 0 5
1.479357E-02
9.446344E-02
2.841858E-01
5.49512ZE-01
8.168290E-01
9.610297E-01
9.950648E-01
9.994841E-01
9,999469E-01
9.999945E-01
9.999995E-01
1.000000E+00

NO. STEPS = 330 NO. F-S = 405 NO. J-S 69

Figure 5 .4 .4utput from program for example problem.

104

Chapter 6
Code Availability

The present version of LSODE, dated March 30, 1987, is available in single or
double precision. The code has been successfully executed on the following
computer systems: Lawrence Livermore Laboratory.3 CDC-7600, Cray- 1, and
Cray-X/MP; NASA Lewis Research Center’s IBM 370/3033 using the TSS
operating sytem (OS), Amdahl5870 using the W C M S OS and the UTS OS,
Cray-X/MP/2/4 using the COS and UNICOS operating sytems and the CFT and
CFI77 compilers, Cray-Y/MP/8/6128 using UNICOS 6.0 and CFI77, Alliant
FWS, Convex C220 minicomputer using the Convex 8.0 OS, and VAX
11/750,11/780,11/785,6320,6520,8650,8800, and 9410; NASAAmes Research
Center’s Cray-2 and Cray-Y/MP using the UNICOS operating system and the
CFI77 compiler; the Sun SPARCstation 1 using the Sun 4.0 OS; the IBM RISC
System/6000 using the AM 3.1 OS and the XLF and F77 compilers; several IRIS
workstations using the IRM 4.0.1 OS and F77 compiler; and various personal
computers under various systems.

The LSODE package is one of five solvers included in the ODEPACK collection
of software for ordinary differential equations (ref. 2). The official distribution
center for ODEPACK is the Energy Science and Technology Software Center i t
Oak Ridge, Tennessee. (ESTSC supersedes NESC, the National Energy Software
Center at Argonne National Laboratory, in this activity.) Both single- and double-
precision versions of the collection are available. Additional details regarding
code availability and procurement can be obtained from

Energy Science and Technology Software Center
PO. Box 1020
Oak Ridge, TN 3783 1-1020
Telephone: (615) 576-2606

The ODEPACK solvers can also be obtained through electronic mail by accessing
the NETLIB collection of mathematical software (ref. 40). Both single- and
double-precision versions of ODEPACK are contained in NETLIB. Detailed
instructions on how to access and use NETLIB are given by Dongarra and Grosse
(ref. 40).

105

Referen .ces
1. Hindmarsh, A.C.: LSODE and LSODI, Two New Initial Value Ordinary Differential Equation

Solvers. ACM SIGNUM Newsletter, vol. 15, no. 4, 1980, pp. 10-1 1.
2. Hindmarsh, A.C.: ODEPACK A Systematized Collection of ODE Solvers. Scientific Computing,

R.S. Stepleman, et al., eds., North Holland Publishing Co., New Yo&, 1983, pp. 5 5 4 4 .
3. Shampine, L.F.; and Gordon, M.K.: Computer Solution of Ordinary Differential Equations: The

Initial Value Problem. W.H. Freeman and Co., San Francisco, CA, 1975.
4. Lambea J.D.: Computational Methods in Ordinary Differential Equations. Wiley & Sons,

New York, 1973.
5. Forsythe, G.E.; and Moler, C.B.: Computer Solution of Linear Algebraic Systems. Prentice-Hall,

Englewood Cliffs, NJ, 1967.
6. Shampine, L.F.: What is Stiffness? Stiff Computation, R.C. Aiken, ed., Oxford University Press.

New York, 1985, pp. 1-16.
7. Shampine, L.F.; and Gear, C.W.: A User’s View of Solving Stiff Ordinary Differential Equations.

SIAM Rev., vol. 21, 1979, pp. 1-17.
8. Radhakrishnan, K.: A Comparison of the Efficiency of Numerical Methods for Integrating

Chemical Kinetic Rate Equations. Computational Methods, K.L. Strange, ed., Chemical Propulsion
Information Agency Publication 401, Johns Hopkins Applied Physics Laboratory, Laurel, MD,

9. Radhakrishnan. K.: New Integration Techniques for Chemical Kinetic Rate Equations. I.
Efficiency Comparison. Combust. Sci. Technol., vol. 46,1986, pp. 59-81.

10. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall,
Englewood Cliffs, NJ, 1971.

11. Shampine, L.F.: Stiffness and the Automatic Selection of ODE Codes. J. Comput. Phys., vol. 54,
1984, pp. 74-86.

12. May, R.; and Noye, J.: The Numerical Solution of Ordinary Differential Equations: Initial Value
Problems. Computational Techniques for Differential Equations, J. Noye, ed., North-Holland,
New York, 1984, pp. 1-94.

13. Forsythe, G.E.; Malcolm, M.A.; and Moler, C.B.: Computer Methods for Mathematical Com-
putations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

14. Hull, T.E., et al.: Comparing Numerical Methods for Ordinary Differential Equations. SIAM J.
Numer. Anal., vol. 9, no. 4, 1972, pp. 603-637.

15. Hindmarsh, A.C.: GEAR: Ordinary Differential Equation System Solver. Report UCID-3OOO1,
Rev. 3, Lawrence Livermore Laboratory, Livermore, CA, 1974.

16. Gear, C.W.: Algorithm 407, DIFSUB for Solution of Ordinary Differential Equations. Comm.
ACM, vol. 14, no. 3,1971, pp. 185-190.

17. Byme, G.D.; and Hindmarsh, A.C.: Stiff ODE Solvers: A Review of Current and Coming
Attractions. J. Comput. Phys., vol. 70, no. 1, 1987, pp. 1-62.

18. Gear, C.W.: The Numerical Integration of Ordinary Differential Equations. Math. Comput.,
vol. 21,1967, pp. 146-156.

19. Gear, C.W.: The Automatic Integration of Stiff Ordinary Differential Equations. Information
Processing, A.J.H. Morrell, ed., North-Holland Publishing Co., New York, 1969, pp. 187-193.

20. Gear, C.W.: The Automatic Integration of Ordinary Differential Equations. Comm. ACM,
vol. 14, no. 3,1971, pp. 176-179.

21. Hindmarsh, A.C.: Linear Multistep Methods for Ordinary Differential Equations: Method
Formulations, Stability, and the Methods of Nordsieck and Gear. Report UCRL-51186, Rev. 1,
Lawrence Livermore Laboratory, Livermore, CA., 1972.

22. Hindmarsh, A.C.: Construction of Mathematical Software. Part III: The Control of Error in the
GEAR Package for Ordinary Differential Equations. Report UCID-30050, Pt. 3, Lawrence
Livermore Laboratory, Livermore, CA, 1972.

1984, pp. 69-82. (Also NASA TM-83590, 1984.)

107

References

23. Byrne, G.D.; and Hindmarsh, A.C.: A Polyalgorithm for the Numencal Solution of Ordinary

24. Brown, P.N.; Byrne, G.D.; and Hindmarsh, A.C: VODE, A Variable-Coefficient ODE Solver.

25. Shampine, L.F.: Implementation of Implicit Formulas for the Solution of OD&. SIAM J. Sci

26. Hall, G.; and Watt, J.M , eds.: Modem Numerical Methods for Ordinary Differential Equations.

27. Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw Hill, New York, 1980.
28. Lapidus, L.; and Seinfeld, J.H.: Numerical Solution of Ordinary Differential Equations. Academic

29. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York,

30. Shampine, L.F.: Type-Insensitive ODE Codes Based on Implicit A-Stable Formulas. Math.

31. Ortega, J.; and Rheinbolt, W.C : Iterative Solution of Nonlinear Equations in Several Variables.

32. Shampine, L.F.: Type-Insensitive ODE Codes Based on Implicit A(a)-Stable Formulas Math.

33. Nordsieck, A.: On Numerical Integration of Ordinary Differential Equations. Math. Comput.,

34. Dongarra, J.J , et al.: LINPACK User’s Guide. SIAM, Philadelphia, 1979
35. Jones, R.E.: SLATEC Common Mathematical Library Error Handling Package. Report SAND78-

36. Strang, G.: Linear Algebra and Its Applications. Second ed.. Academic Press, New York, 1980.
37 Radhakrishnan, K.: LSENS-A General Chemical Kinetics and Sensitivity Analysis Code for

NASA

38. Robertson, H.H.: The Solution of a Set of Reaction Rate Equations Numerical Analysis, An

39. Benson, S.W.: The Foundations of Chemical Kinetics. Robert E Krieger Publishing Co.. Malabar,

40. Dongarra, J J.; and Grosse, E.: Distribution of Mathematical Software via Electronic Mail

Differential Equations ACM Trans. Math. Software, vol. 1. no. 1, 1975, pp. 71-96.

SIAM J. Sci. Stat. Comput., vol. 10, 1989, pp. 1038-1051.

Stat. Comput., vol. 1, no. 1, 1980, pp. 103-118.

Clarendon Press, Oxford, U.K., 1976.

Press, New York, 1971

1962.

Comput., vol. 36, no. 154, 1981, pp. 499-510.

Academic Press, New York, 1970

Cornput., vol. 39, no. 159, 1982. pp. 109-123.

vol 16, 1962, pp. 2249.

1189, Sandia National Laboratories, Albuquerque, NM, 1978.

Homogeneous Gas-Phase Reactions. 1 Theory and Numerical Solution Procedures
RP-1328. 1994.

Introduction, J. Walsh, ed., Academic Press, New York, 1966, pp. 178-182.

FJ-, 1982.

Comm. ACM, vol. 30, no 5,1987, pp. 403407.

*US G O V E R N M E N T P R I N T I N G OFFICE 1 9 9 5 - t 5 0 - 0 1 2 - 0 3 5 5 4

108

REPORT DOCUMENTATION PAGE I ~

1. AGENCY USE ONLY (Leave 12 REPORT DATE 13. REPORTTYPE AND DATES COVERED

December 1993
4 TITLE AND SUBTKLE

Descripuon and Use of LSODE, the Livermore Solver for Ordinary
Differential Equauons

6. AUTHOR(S)

Knshnan Radhaknshnan and Alan C. Hindmarsh

7. PERFORMING ORGANIZATION NAME(S) AND ADDREWES)

Nauonal Aeronautics and Space Admnistration
Lewis Research Center
Cleveland, Ohio 44135-3191

9. SPONSORINWUONKORING AGENCY NAME(S) AND ADDREWES)

National Aeronautics and Space Administrauon
Washington. D.C. 20546-0001

11. SUPPLEMENTARY NOTES

:ference Publication
5. FUNDING NUMBERS

\VU-505-62-52

B. PERFORMING ORGANIZATION
REPORT NUMBER

E-5843

0. SPDNSORlNWUONlTORlNG
AGENCY REPORT NUMBER

NASA RP-1327
UCRL-ID-I 13855

Knshnan Radhaknshnan, SverdrupTechnology, Inc.. Lewis Research Center Group. 2001 Aerospace Parkway. Brook
Park, Ohio 44142 (work funded by NASA Contract NAS3-25266). and Alan C Hindmarsh. Lawrence Livermore
Nauonal Laboratory. Livermore. CA 94551 (work funded by DOE Contract \V-7405-ENG48) Responsible person,
Edward J Mularz, organizauon code 2650, (216) 433-5850. Repnnted in October 1994 incorporaung correcuons noted
on the errata

12a DISTRIBUllONIAVAILABI!JTY STATEMENT I1Zb. DISTRIBUllON CODE

Unclassified - Unlimted
Subject Categories 61 and 64

LSODE, the Livermore Solver for Ordinary Differential Equations, is a package of FORTRAN subrouunes designed for
the numerical soluuon of the iniual value problem for a system of ordinary differential equations It is particularly well
suited for "suff differential systems. for which the backward differeniiauon formula method of orders 1 to 5 is provided.
The code includes the Adams-Moulton method of orders 1 to 12; so it can be used for nonsuff problems as well. In
addition. the user can easily switch methods to increase computational efficiency for problems that change character For
both methods a vanety of corrector iterauon techniques is included in the code. Also. to minimize computauonal work.
both the step size and method order are vaned dynmcally This report presents complete descripuons of the code and
integration methods, including their implementation It also provides a detailed guide to the use of the code, as well as an
illusuauve example problem.

14 SUBJECTTERMS 15. NUMBEROFPAGES
Fim-order ordinary dilTerentlal quaiions: Stiff ODE'S. Lincar multistep mahods. Adam-Moulion 122

A06
mehod, Backward diffemniiauon formula method: Smplc iterauon. Newton-Raphson nerauon.
Numerical Jacobians: Accuracy; Error convot Muhod order selection: Step size selection

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURrPl CLASSIFICATION 19. SECURrrY CUSSIFICATION 20. LIMKATION OF ABSTRACT
OF REPORT OFTHIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified
ISN 7540-01-280-5500 Standard Farm 298 (Rev. 2-89)

Prewrbed by ANSI Sld 234.18
288102

National Aeronautics and
Space Administration
Lewis Research Center
21000 Brookpark Rd.
Cleveland, OH 441 35-31 91

Officlal Business
Penalty for Private Use $300

POSTMASTER: If Undeliverable - Do Not Return

	ListofFigures
	Chapter1 Introduction
	Chapter 2 Description and Implementation of Methods
	2.1 Linear Multistep Methods
	2.2 Corrector Iteration Methods
	2.2.1 Functional Iteration
	2.2.2 Newton-Raphson Iteration
	2.2.3 Jacobi-Newton Iteration
	2.2.4 Unified Formulation

	2.3 MatrixFormulation
	2.5 Local Truncation Error Estimate and Control
	2.6 Corrector Convergence Test and Control
	2.7 Step Size and Method Order Selection and Change
	2.8 Interpolation at Output Stations
	2.9 Starting Procedure

	Chapter 3 Description of Code
	3.1 Integration and Corrector Iteration Methods
	3.2 Codestructure
	3.3 Internal Communication
	3.4 Special Features
	3.4.1 -Initial Step Size Calculation
	3.4.2 Switching Methods
	Excessive Accuracy Specification Test
	3.4.5 Numerical Jacobians
	Solution of Linear System of Equations
	Jacobian Matrix Update
	3.4.9 Local Truncation Error Test and Corrective Actions
	3.4.10 Step Size and Method Order Selection
	3.5 Error Messages

	Chapter 4 Description of Code Usage
	4.1 Code Installation
	4.1.1 BLOCK DATA Variables
	Modifying Subroutine XERRWV

	4.2 Callsequence
	4.3 User-Supplied Subroutine for Derivatives (F)
	4.4 User-Supplied Subroutine for Analytical Jacobian (JAC)
	Normal Usage Mode
	4.5.2 Use of Other Options
	4.5.3 Dimensioning Variables
	4.5.4 Decreasing the Number of Differential Equations (NEQ)
	4.5.5 Specification of Output Station (TOUT)
	4.5.6 Specification of Critical Stopping Point (TCRTT)
	ITOL, RTOL and ATOL)
	Methods(MF)
	Switching Integration and Corrector Iteration Methods

	4.6 Optional Input
	4.6.1 Initial Step Size (HO)
	4.6.2 Maximum Step Size (HMAX)
	Maximum Method Order (MAXORD)

	4.7 Optional Output
	4.8 Other Routines
	4.8.1 Interpolation Routine (Subroutine INTDY)
	Using Restart Capability (Subroutine SRCOM)
	XSETUN)

	4.9 Optionally Replaceable Routines
	4.9.1 Setting Error Weights (Subroutine EWSET)
	4.9.2 Vector-Norm Computation (Function VNORM)

	4.10 Overlay Situation
	4.11 Troubleshooting

	Chapter 5 Example Problem
	5.1 Description of Problem
	5.2 Coding Required To Use LSODE
	5.2.1 General

	Figu.re 3.1.-Structure of MODE package
	Figure 3.2.-Howchart of subroutine LSODE
	Figure 33.-Nowchart of subroutine STODE
	Figure 5.L-Listing of hUIN program for example problem
	example problem
	matrix for example problem

	Figure 5.4.4utput from program for example problem
	method in normal form of orders 1 to
	and corresponding values of METH the first decimal digit of MF
	corresponding values of MITER the second decimal digit of MF
	Table 3.3.-Description of subprograms used in LSODE
	subprograms in double-precision version of LSODE
	subprograms in single-precision version of LSODE

	Table 3.6.-Common blocks with variables and subprograms where used
	current values and subprograms where they are set
	orcomputed

	techniques included in code
	Table 4.1.-Values of ITASK used in LSODE and their meanings
	Table 4.2.-Values of ITOL used in LSODE and their meanings
	and their meanings
	Table 4.4.-Values of ISTATE returned by LSODE and their meanings
	andtheirmeanings
	locations meanings and default values
	locationsandmeanings
	can be obtained from array RWORK and their names and locations
	minimum LRW) for each MF

	Le., minimum LIW) for each MITER

